《北师大版七年级上册数学知识点汇总(共4页).doc》由会员分享,可在线阅读,更多相关《北师大版七年级上册数学知识点汇总(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上七年级数学知识点汇总第一章 丰富的图形世界1. 2. 3. 球体:由球面围成的(球面是曲面)4. 几何图形是由点、线、面构成的。几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;面与面相交得到线;线与线相交得到点。5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱它们底面图形的形状分别为三角形、四边形、五边形、六边形9. 长方体和正方体都是四棱柱。10. 圆
2、柱的表面展开图是由两个相同的圆形和一个长方形连成。11. 圆锥的表面展开图是由一个圆形和一个扇形连成。12. 设一个多边形的边数为n(n3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有条对角线。13. 圆上两点之间的部分叫做弧,弧是一条曲线。14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。第二章 有理数及其运算1.2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。 任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示
3、有理数)3、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。 (0的相反数是0)4、在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等。 数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。5、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。0-1-2-3123越来越大 或 绝对值的性质:除0外,绝对值为正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a
4、|06、比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: 先求出两个数负数的绝对值;比较两个绝对值的大小;根据“两个负数,绝对值大的反而小”做出正确的判断。7、绝对值的性质:对任何有理数a,都有|a|0 若|a|=0,则a=0,反之亦然若|a|=b,则a=b 对任何有理数a,都有|a|=|-a|8、有理数加法法则: 同号两数相加,取相同符号,并把绝对值相加。异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。一个数同0相加,仍得这个数。加法的交换律、结合律在有理数运算中同样适用。灵活运用运算律,使用运算简化,通常有下列
5、规律:互为相反的两个数,可以先相加; 符号相同的数,可以先相加;分母相同的数,可以先相加; 几个数相加能得到整数,可以先相加。9、有理数减法法则: 减去一个数,等于加上这个数的相反数。有理数减法运算时注意两“变”:改变运算符号;改变减数的性质符号(变为相反数) 有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。10、有理数的加减法混合运算的步骤:写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;利用加法法则,加法交换律、结合律简化计算。(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变
6、成它本身的相反数。)11、有理数乘法法则: 两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。如果两个数互为倒数,则它们的乘积为1。(如:-2与- 、 等)乘法的交换律、结合律、分配律在有理数运算中同样适用。12、有理数乘法运算步骤:先确定积的符号;求出各因数的绝对值的积。13、乘积为1的两个有理数互为倒数。注意:零没有倒数求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。正数的倒数是正数,负数的倒数是负数。14、有理数除法法则: 两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。0不可作为除数,否则无意义。指数底数幂15、有理
7、数的乘方 注意:一个数可以看作是本身的一次方,如5=51;当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。16、乘方的运算性质:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;任何数的偶数次幂都是非负数;1的任何次幂都得1,0的任何次幂都得0;非0数的0次幂都得1;-1的偶次幂得1;-1的奇次幂得-1;在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。17、有理数混合运算法则:先算乘方,再算乘除,最后算加减。 如果有括号,先算括号里面的。第三章 字母表示数1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。注
8、:单独的一个数或一个字母也是代数式。注意:代数式中除了含有数、字母和运算符号外,还可以有括号;代数式中不含有“=、”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。2、代数式的书写格式:代数式中出现乘号,通常省略不写,如vt;数字与字母相乘时,数字应写在字母前面,如4a;带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;数字与数字相乘,一般仍用“”号,即“”号不省略;在代数式中出现除法运算时,一般按照分数的写法来写,如4(a-4)应写作;注意:分数线具有“”号和括号的双
9、重作用。在表示和(或差)的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米3、代数式的系数: 代数式中的数字因数叫做代数式的系数。如3x,-4y的系数分别为3,-4。 注意:单个字母的系数是1,如a的系数是1;只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是14、代数式的项: 代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。5、同类项: 所含字母相同,并且相同字母的指数也相同的项叫做同类项。注意:判断几个代数式是否是同类项有两个条件:a.所含字母
10、相同;b.相同字母的指数也相同。这两个条件缺一不可;同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。6、合并同类项:把代数式中的同类项合并成一项,叫做合并同类项。合并同类项的理论根据是逆用乘法分配律;合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 注意:如果两个同类项的系数互为相反数,合并同类项后结果为0;不是同类项的不能合并,不能合并的项,在每步运算中都要写上;只要不再有同类项,就是最后结果,结果还是代数式。7、根据去括号法则去括号: 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“”号去掉,括号里各项都改变
11、符号。8、根据分配律去括号: 括号前面是“+”号看成+1,括号前面是“”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。注意:去括号时,要连同括号前面的符号一起去掉;去括号时,首先要弄清楚括号前是“+”号还是“”号;改变符号时,各项都变号;不改变符号时,各项都不变号。第四章 平面图形及位置关系一. 线段、射线、直线1. 正确理解直线、射线、线段的概念以及它们的区别:名称图形表示方法端点长度直线直线AB(或BA)直线l无端点无法度量射线射线OM1个无法度量线段线段AB(或BA)线段l2个可度量长度AOB图12. 直线公理:经过两点有且只有一条直线.b图2二.比较线段
12、的长短1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.图41图32. 比较线段长短的两种方法:圆规截取比较法; 刻度尺度量比较法.3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;终边始边图5用圆规可以画出线段的和、差、倍.三.角的度量与表示平角图61. 角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.图8CABO2. 角的表示法:角的符号为“” 用三个字母表示,如图1所示AOB用一个字母表示,如图2所示b用一个数字表示,如图3所示1 用希腊字母表示,如图4所示3、经过两点有且只有一条直线。周角图7两点之间的所有连线中,线段
13、最短。两点之间线段的长度,叫做这两点之间的距离。4、角的单位换算: 1=60 1=60”角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:5、一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6所示:终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示:6、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线互相平行。互相垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与已知直线垂直。如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点C到直线AB的距离。专心-专注-专业