《理科数学概率大题训练2017(共4页).doc》由会员分享,可在线阅读,更多相关《理科数学概率大题训练2017(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上理科数学概率大题训练2017/2/2818. (本小题满分12分)2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;(3)以这16人的样本数据来估计整个被调查群体的总
2、体数据,若从该被调查群体(人数很多)任选3人,记表示抽到“极满意”的人数,求的分布列及数学期望. 2017届吉林省普通中学高中毕业班第二次调研测试19.某车间20名工人年龄数据如下表:年龄(岁)19242630343540合计工人数(人)133543120(1)求这20名工人年龄的众数与平均数;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.1、(2016年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”
3、得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响假设“星队”参加两轮活动,求:() “星队”至少猜对3个成语的概率;() “星队”两轮得分之和的分布列和数学期望7、(胶州市2016届高三上学期期末)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个篮球与2个白球的袋中任意摸出1个球,根据摸出4个球张红球与篮球的个数,设一、二、三等奖如下:奖级摸出红、篮球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无
4、奖且每次摸奖最多只能获得一个奖级.()求一次摸奖恰好摸到一个红球的概率;()求摸奖者在一次摸奖中获奖金额的分布列与数学期望. 8、(临沂市2016届高三上学期期末)甲、乙、丙三班进行知识竞赛,每两班比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲班胜乙班的概率为,甲班胜丙班的概率为,乙班胜丙班的概率为.(1)求甲班获第一名且丙班获第二名的概率;(2)设在该次比赛中,甲班得分为,求的分布列和数学期望. 9、(青岛市2016届高三上学期期末)某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为,已知该厂三个生产小组分别每月负责生产一台这种仪器.(I)求本月恰有两台仪器完全合格的概率;(II)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为,求的分布列和每月的盈利期望. 专心-专注-专业