《正弦定理的几种证明方法(共3页).doc》由会员分享,可在线阅读,更多相关《正弦定理的几种证明方法(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上正弦定理的几种证明方法abDABC1.利用三角形的高证明正弦定理(1)当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。由此,得 ,同理可得 , 故有 .从而这个结论在锐角三角形中成立.ABCDba(2)当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有, 。由此,得 ,同理可得 故有 .由(1)(2)可知,在ABC中, 成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即.1用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A,点B之间的距AB|,可测量角A与角B,需要
2、定位点C,即:在如图ABC中,已知角A,角B,ABc,求边AC的长b解:过C作CDAB交AB于D,则 推论:同理可证:2.利用三角形面积证明正弦定理DCBA已知ABC,设BCa, CAb,ABc,作ADBC,垂足为D.则RtADB中, ,AD=ABsinB=csinB.SABC=.同理,可证 SABC=. SABC=.absinc=bcsinA=acsinB,在等式两端同除以ABC,可得.即.3.向量法证明正弦定理(1)ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90-A,j与的夹角为90-C.由向量的加法原则可得,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同
3、取与向量j的数量积运算,得到 由分配律可得. B C|j|Cos90+|j|Cos(90-C)=|j|Cos(90-A). j asinC=csinA. A 另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与的夹角为90+B,可得.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90-C,j与的夹角为90-B).CA(2)ABC为钝角三角形,不妨设A90,过点A作与垂直的单位向量j,则j与的夹角为A-90,j与的夹角为90-C.由,得j+j=j, jAB即aCos(90-C)=cCos(A-90),asinC=csinA.另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与夹角为90+B.同理,可得. 4.外接圆证明正弦定理在ABC中,已知BC=a,AC=b,AB=c,作ABC的外接圆,O为圆心,连结BO并延长交圆于B,设BB=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到BAB=90,C =B,sinC=sinB=.同理,可得.这就是说,对于任意的三角形,我们得到等式.专心-专注-专业