《专题图解法分析动态平衡(共15页).doc》由会员分享,可在线阅读,更多相关《专题图解法分析动态平衡(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 专题:图解法分析动态平衡问题1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。3.图解法分析动态平衡问题的条件:往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这
2、是解答动态问题的关键4.典型例题:例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的大小如何变化?TA是一直变小,而TB却是先变小后增大,当OB与OA垂直时TB最小。例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的压力为 FN,球对板的压力为FN2在将板BC逐渐放至水平的过程中,下列说法中,正确的是( )AFN和FN2都增大 BFN和FN2都减小CFN增大,FN2减小 DFN减小,FN2增大思考:1如图所示,电灯悬挂于两壁之间,更换
3、水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时( )A绳OA的拉力逐渐增大;B绳OA的拉力逐渐减小;C绳OA的拉力先增大后减小; D绳OA的拉力先减小后增大。例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态今使板与斜面的夹角缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化?思考:2.如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化?专心-专注-专业F1F2G思考:3重G的光滑小球静止在固定斜面和竖直挡板
4、之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化? 【例1】如图242所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是()A增大 B先减小,后增大C减小 D先增大,后减小解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法)作出力的平行四边形,如图甲所示由图可看出,FBC先减小后增大方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法如图乙所示,将
5、FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出: FABcos 60FB Csin,FABsin 60FB CcosFB,联立解得FBCsin(30)FB/2,显然,当60时,FBC最小,故当变大时,FBC先变小后变大变式11如图243所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上若杆与墙面的夹角为,斜面倾角为,开始时轻杆与竖直方向的夹角. 且 90,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N的大小变化情况是() AF逐渐增大,T逐渐减小,FN逐渐减小
6、 BF逐渐减小,T逐渐减小,FN逐渐增大 CF逐渐增大,T先减小后增大,FN逐渐增大DF逐渐减小,T先减小后增大,FN逐渐减小 解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大斜面对球的支持力FN逐渐增大,对斜面受力分析如图乙所示,可知FFNsin,则F逐渐增大,水平面对斜面的支持力FNGFNcos ,故FN逐渐增大答案:C相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。(2)往往涉及三个力,其中一个力为恒力,另两个
7、力的大小和方向均发生变化,则此时用相似三角形分析。相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。例1、半径为的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面的距离为,轻绳的一端系一小球,靠放在半球上的点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由到的过程中,半球对小球的支持力和绳对小球的拉力的大小变化的情况是()、变大,变小、变小,变大、变小,先变小后变大、不变,变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力不变,支持力,绳
8、子的拉力一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。由于在这个三角形中有四个变量:支持力的大小和方向、绳子的拉力的大小和方向,所以还要利用其它条件。实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:可得:运动过程中变小,变小。运动中各量均为定值,支持力不变。正确答案D。巩固练习:1、如图所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点O、A之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻
9、弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为( ) AF1F2 BF1F2 CF1F2 D无法确定2、如图甲所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮A.现用力F拉绳,开始时BCA90,使BCA缓慢减小,直到杆BC接近竖直杆AC.此过程中,杆BC所受的力()A大小不变B逐渐增大C逐渐减小 D先增大后减小ACB3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移
10、,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变 4、如图所示,竖直杆CB顶端有光滑轻质滑轮,轻质杆OA自重不计,可绕O点自由转动OAOB当绳缓慢放下,使AOB由00逐渐增大到1800的过程中(不包括00和180下列说法正确的是( )A绳上的拉力先逐渐增大后逐渐减小 B杆上的压力先逐渐减小后逐渐增大C绳上的拉力越来越大,但不超过2G D杆上的压力大小始终等于G5、如图所示,质量不计的定滑轮用轻绳悬挂在B点,另一条轻绳一端系重物C,绕过滑轮后,另一端固定在墙上A点,若改变B点
11、位置使滑轮位置发生移动,但使A段绳子始终保持水平,则可以判断悬点B所受拉力FT的大小变化情况是( )A若B向左移,FT将增大B若B向右移,FT将增大C无论B向左、向右移,FT都保持不变D无论B向左、向右移,FT都减小 1B 2A 3C 4CD 5B例2、如图2-1所示,竖直绝缘墙壁上的处由一固定的质点,在的正上方的点用细线悬挂一质点,、两点因为带电而相互排斥,致使悬线与竖直方向成角,由于漏电使、两质点的电量逐渐减小,在电荷漏空之前悬线对悬点的拉力大小()、变小、变大、不变、无法确定解析:有漏电现象,减小,则漏电瞬间质点的静止状态被打破,必定向下运动。对小球漏电前和漏电过程中进行受力分析有如图2
12、-2所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。三力作用构成动态下的封闭三角形,而对应的实物质点、及绳墙和点构成动态封闭三角形,且有如图2-3不同位置时阴影三角形的相似情况,则有如下相似比例:可得:变化过程、均为定值,所以不变。正确答案。以上两例题均通过相似关系求解,相对平衡关系求解要直观、简洁得多,有些问题也可以直接通过图示关系得出结论。 O L L A X B 图63、如图.所示,有两个带有等量的同种电荷的小球A和B,质量都是m,分别悬于长为L的悬线的一端。今使B球固定不动,并使OB在竖直立向上,A可以在竖直平面内自由摆动,由于静电斥力的作用,A球偏离B球的距离为x。如果其它条
13、件不变,A球的质量要增大到原来的几倍,才会使AB两球的距离缩短为。1整体法和隔离法专题选择研究对象是解决物理问题的首要环节在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体
14、法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。这两种方法广泛地应用在受力分析、动能定理、机械能守恒等问题中。对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法解
15、题中应遵循“先整体、后隔离”的原则。bcam1m2【例1】 在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1m2,三木块均处于静止,则粗糙地面对于三角形木块() A有摩擦力作用,摩擦力的方向水平向右B有摩擦力作用,摩擦力的方向水平向左C有摩擦力作用,但摩擦力的方向不能确定D没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选DAOBPQ【点评】本题若以三角形木块a为研究对象,分析b和c对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了此题可扩展为b、c两个物体均匀速下滑,
16、想一想,应选什么?【例2】有一个直角支架 AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环 Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是( )AN不变,T变大 BN不变,T变小CN变大,T变大 DN变大,T变小ABF【例3】如图所示,设A重10N,B重20N,A、B间的动摩擦因数为0.1,B与地面的摩擦因数为0.2问:(1)至少对B向左施多大的力,才能使A、B发生相对滑动?(
17、2)若A、B间1=0.4,B与地间2=0.l,则F多大才能产生相对滑动?FABC【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动,且A与B、A与C均无相对滑动,图中的角及F为已知,求A与B之间的压力为多少?【例5】如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为( )A4mg、2mg B2mg、0 C2mg、mg D4mg、mg【例6】如图所示,两个完全相同的重为
18、G的球,两球与水平地面间的动摩擦因数都是,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为。问当F至少多大时,两球将发生滑动?【例7】如图所示,重为8N的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N的物体A相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。【例8】如图所示,光滑的金属球B放在纵截面为等边三角形的物体A与坚直墙之间,恰好匀速下滑,已知物体A的重力是B重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A与水平面之间的动摩擦因数是多少?【例9】如图所示,两木块的质量分别为m
19、1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态现缓慢向上提上面的木块,直到它刚离开上面弹簧。在这过程中下面木块移动的距离为【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F把书B匀速抽出。观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力 F应为多大?(2)该书的页数。(3)若两本书任意两张纸之间的动摩擦因数相等,则为多少?专题X 整体法和隔离法选择研究对象是解决物理问题的首要环节在很多物理问题中,研究对象的选择方案是
20、多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。这两种方法广泛地应用在受力分析、动能定理、机械能守
21、恒等问题中。对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法解题中应遵循“先整体、后隔离”的原则。bcam1m2【例1】 在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图
22、所示,已知m1m2,三木块均处于静止,则粗糙地面对于三角形木块() A有摩擦力作用,摩擦力的方向水平向右B有摩擦力作用,摩擦力的方向水平向左C有摩擦力作用,但摩擦力的方向不能确定D没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选DAOBPQ【点评】本题若以三角形木块a为研究对象,分析b和c对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了此题可扩展为b、c两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环 Q,两环质量均为m,两环间由
23、一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是( )AN不变,T变大 BN不变,T变小CN变大,T变大 DN变大,T变小【解析】隔离法:设PQ与OA的夹角为,对P有:mgTsin=N对Q有:Tsin=mg所以 N=2mg, T=mg/sin 故N不变,T变大答案为B整体法:选P、Q整体为研究对象,在竖直方向上受到的合外力为零,直接可得N=2mg,再选P或Q中任一为研究对象,受力分析可求出T=mg/sin【点评】为使解答简便,选取研究对象时,一般
24、优先考虑整体,若不能解答,再隔离考虑ABF【例3】如图所示,设A重10N,B重20N,A、B间的动摩擦因数为0.1,B与地面的摩擦因数为0.2问:(1)至少对B向左施多大的力,才能使A、B发生相对滑动?(2)若A、B间1=0.4,B与地间2=0.l,则F多大才能产生相对滑动?ABFTTfB【解析】(1)设A、B恰好滑动,则B对地也要恰好滑动,选A、B为研究对象,受力如图,由平衡条件得:F=fB+2T选A为研究对象,由平衡条件有ATfAT=fA fA=0.110=1N fB=0.230=6N F=8N。(2)同理F=11N。FABC【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C两部分完
25、全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动,且A与B、A与C均无相对滑动,图中的角及F为已知,求A与B之间的压力为多少?【解析】以整体为研究对象,木块平衡得F=f合fBf1F1又因为 mA=2mB=2mC 且动摩擦因数相同,所以 fB=F/4再以B为研究对象,受力如图所示,因B平衡,所以F1=fBsin 即:F1=Fsin/4【点评】本题也可以分别对A、B进行隔离研究,其解答过程相当繁杂。【例5】如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖
26、对第三块砖的摩擦力分别为A4mg、2mg B2mg、0 C2mg、mg D4mg、mg【解析】设左、右木板对砖摩擦力为f1,第 3块砖对第2块砖摩擦为f2,则对四块砖作整体有:2f1=4mg, f1=2mg。对1、2块砖平衡有:f1+f2=2mg, f2=0,故B正确。【例6】如图所示,两个完全相同的重为G的球,两球与水平地面间的动摩擦因数都是,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为。问当F至少多大时,两球将发生滑动?【解析】首先选用整体法,由平衡条件得F2N=2G 再隔离任一球,由平衡条件得Tsin(/2)=N 2Tcos(/2)=F 联
27、立解之。【例7】如图所示,重为8N的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N的物体A相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。【解析】分别隔离物体A、球,并进行受力分析,如图所示:由平衡条件可得: T=4N Tsin370+N2cos370=8 N2sin370=N1+Tcos370得 N1=1N N2=7N。【例8】如图所示,光滑的金属球B放在纵截面为等边三角形的物体A与坚直墙之间,恰好匀速下滑,已知物体A的重力是B重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A与水平面之间的动摩擦因数是多少?【解析】首先以
28、B为研究对象,进行受力分析如图由平衡条件可得: N2=mBgcot300 再以A、B为系统为研究对象受力分析如图。由平衡条件得:N2=f, f=(mA+mB)g 解得 =3/7【例9】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态现缓慢向上提上面的木块,直到它刚离开上面弹簧。在这过程中下面木块移动的距离为【分析】本题主要是胡克定律的应用,同时要求考生能形成正确的物理图景,合理选择研究对象,并能进行正确的受力分析。求弹簧2原来的压缩量时,应把m1、m2看做一个整体,2的压缩量x1=(m1+m2)g/k2。m
29、1脱离弹簧后,把m2作为对象,2的压缩量x2=m2g/k2。d=x1-x2=m1g/k2。答案为C。【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F把书B匀速抽出。观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力 F应为多大?(2)该书的页数。(3)若两本书任意两张纸之间的动摩擦因数相等,则为多少?【解析】(l)从表中可看出,将书分成 2,4,8,16,是2倍数份时,拉力F将分别增加6N,12N,24N,增加恰为2的倍数,故将书分成32份时,增加拉力应为 48N,故力 F=
30、46548=94.5N;(2)逐页交叉时,需拉力F=1905N,恰好是把书分成 64份时,增加拉力 482=96N,需拉力 F=94.596=190.5N可见,逐页交叉刚好分为64份,即该书有64页;(3)两张纸之间动摩擦因数为,则F=1905=G/64+2G/64+3G/64+128G/64=G/64(1+2+3+128)=1295 =190.5/(1295)=0.3。【点评】请注意,将书分成份数不同,有所不同。FN不变,F变小5.平衡方程式法:平衡方程式法适用于三力以上力的平衡,且有一个恒力,通过它能够建立恒定不变的方程式。根据其中一个力的变化情况,求出另一个力的变化情况。 例5:人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是( )(A)绳的拉力不断增大(B)绳的拉力保持不变(C)船受到的浮力保持不变(D)船受到的浮力不断减小