排列教学设计(共5页).doc

上传人:飞****2 文档编号:13719405 上传时间:2022-04-30 格式:DOC 页数:5 大小:222.50KB
返回 下载 相关 举报
排列教学设计(共5页).doc_第1页
第1页 / 共5页
排列教学设计(共5页).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《排列教学设计(共5页).doc》由会员分享,可在线阅读,更多相关《排列教学设计(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上121排列教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导 授课类型:新授课 课时安排:1课时 教 具:多媒体教材分析:分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、

2、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教法选择:探究式与讲授式结合学情分析:对于高二的学生,知识经验已较为丰富,他们已具备了一定的抽象思维能力和演绎推理能力,所以在授课时注重引导、启发、研究和探讨,从而促进思维能力的进一步发展。针对高中生思维特点和

3、心里特征,本节课我采用启发式、探究式、讲授式相结合的教学方式。教学过程:一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 二、讲解新课:问题1从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被

4、取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,共有 32=6 种问题2从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字

5、只能从余下的 2 个数字中去取,有 2 种方法根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有432=24种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示由此可写出所有的三位数: 123,124, 132, 134, 142, 143,213,214, 231, 234, 241, 243,312,314, 321, 324, 341, 342,412,413, 421, 423, 431, 432 。同样,问题 2 可以归结为:从4个不同的元素a, b, c,d中任取 3 个,

6、然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是 abc, abd, acb, acd, adb, adc,bac, bad, bca, bcd, bda, bdc,cab, cad, cba, cbd, cda, cdb,dab, dac, dba, dbc, dca, dcb.共有432=24种.树形图如下 a b 2排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同

7、3排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列4排列数公式及其推导:求可以按依次填3个空位来考虑,=,求以按依次填个空位来考虑,排列数公式: ()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘)另外,我们规

8、定 0! =1 .例2某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列因此,比赛的总场次是=1413=182. 例3 (1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,有多少种不同的送法? (2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是=543=60. (2)由于有5种不同的书,送给

9、每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是555=125. 例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算例4用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析:在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素一般的,我们可以从特殊元素的排列位置人手来考虑问题解法 1 :由于在

10、没有重复数字的三位数中,百位上的数字不能是O,因此可以分两步完成排列第1步,排百位上的数字,可以从1到9 这九个数字中任选 1 个,有种选法;第2步,排十位和个位上的数字,可以从余下的9个数字中任选2个,有种选法(图1.2一 5) 根据分步乘法计数原理,所求的三位数有=998=648(个) .解法 2:从0到9这10个数字中任取3个数字的排列数为,其中 O 在百位上的排列数是,它们的差就是用这10个数字组成的没有重复数字的三位数的个数, -=1098-98=648.巩固练习:书本20页,,5,6课外作业:第27页 习题1.2 A组,4,5,6,7教学反思:本节课从学生已有的生活经验出发,创设生活情境,激发学习兴趣。讲授时也注重排列的特征:一个是“取出元素”;二是“按照一定顺序排列” ,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同. 了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。但是在实际教学过程中,留给学生讨论思考的时间不足,所以还是没有给学生更多的发挥空间。以后教学中要大胆的放手,充分体现学生的主体地位。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁