《人教版小学五年级数学上册教学反思(共28页).doc》由会员分享,可在线阅读,更多相关《人教版小学五年级数学上册教学反思(共28页).doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上人教版小学五年级数学上册教学反思第一课时 小数乘以整数教学反思:今天的教学法在学生预习后显得十分顺利,但在预习与作业中也暴露出一些问题需要注意:1、第二个因数是两位数的小数乘法该怎样计算,由于教材中并无此类例题,要适当补充指导;2、小数乘位数的竖式书写格式,学生中常见错误有如下几种: 2。3 2。3 * 1 2 * 12 4。6 4 6 2。3 2 3 2 7。6 6。9 3、计算中积的小数点末尾有0时,如何确定小数点的位置;4、计算结果中小数点末尾的0没去掉,化简。第二课时小数乘小数教学反思: 经过预习学习效率大大提高.两道例题能在一课时内完成, 且还留有较充分的时
2、间做课堂作业.作业中的主要问题有以下几种: 1、竖式写法格式不正确。如有的学生将小数乘法和小数加法的格式混淆,写竖式时错将小数点对齐了写;2、小数点定位存在问题。1。06*25有个别学生认为25是两位小数,所以出现积的小数点定位错误。第三课时 较复杂的小数乘法教学反思: 本课教学难度不大,但学生在学习过程 存在一些困惑: 1、当已知单价、数量为小数时,不能正确列式解答,说明对小数乘法意义的谈化给他们的学习造成一定的影响。 2、作业中解决实际问题时,有下列计算题存在问题,需加强指导:(1) 第二个因数是三位数的乘法。如P9第13题:0.96*16.5(2) (2)其中有一个因数末尾有零的计算题.
3、如P8第8题: 150*18.7第四课时 积的近似值教学反思: 补充的一道生活中购物的题体现了数学在生活中的应用,但全班仅一人主动保留了结果,这反映出数学与生活脱离的现象及待解决与完善。但这题在现实生活中到底是应该保留几位小数呢?学生保留的是一位,而我建议他们保留两位,哪种更合理?更符合生活实际?第五课时 连乘、乘加、乘减教学反思: 在练习中发现小数加减法出现回生现象。主要是竖式写法与小数乘法混淆,错将小数加减法也把末尾对齐,所以必须及时帮助学生回忆起小数加减法的法则。第六课时整数乘法运算定律推广到小数乘法教学反思: 乘法的交换律和结合律的应用总体情况掌握较好,但在解答25*3.2*12.5题
4、时,有学生写成了2.5*4+0.8*12.5。 乘法的分配律则明显是学生的难点,部分学生无法举一反三。如7.8*9.9,7.8*99+7.8这些稍有变化的简算题错误率较高。第二单元 小数除法 第一课时小数除以整数(一) 商大于1课后反思: 学生们在前一天的预习后共提出四个问题: 1,被除数是小数的除法怎样计算?(熊佳豪) 2,为什么在计算时先要扩大, 最后又要将结果缩小?(郑扬) 3,小数除以整数怎样确定小数点的位置?(梅家顺 4,为什么小数点要打在被除数小数点的上面? 特别是第4个问题很有深度,有研究的价值.在这四个问题的带动下, 学生们一直精神饱满地投入到学习的全过程,教学效果相当好.第二
5、课时小数除以整数(二) 商小于1教学反思: 本课新增知识点多,难度较大,特别是例3应引导学生去思考其计算依据。课堂中张子钊同学问到“为什么以往除法有余数时都是写商几余几,可今天却要在小数点后面添0继续除呢?”这反映出新知与学生原有知识产生了认知冲突,在此应帮助学生了解到知识的学习是分阶段的,逐步深入的。以往无法解决的问题在经过若干年后就可以通过新的方法、手段、途径来解决,从而引导其构建正确的知识体系。 学生归纳综合能力的培养在高年段显得尤为重要。虽然教材中并没有规范的计算法则,但作为教师有必要让学生经历将计算方法归纳概括并通过语言表述出来的过程,所以引导学生小结小数除法的计算法则,然后再由教师
6、总结出规范简洁的法则是必不可少的教学环节。 作业应注意以下几方面错误:1、 整数除以整数,商是小数的计算题,学生容易遗忘商的小数点。2、 2、商中间有零的除法掌握情况不太好,需要及时弥补。对于极个别计算确有困难的同学建议用低段带方格的作业本打草稿,这样便于他们检查是否除到哪一位就将商写在那一位的上面。第三课时一个数除以小数教学反思: 困惑:学生在预习后质疑“为什么7.65/0.85越除越小?”(韩荆国)这个问题反映出学生在预习中不仅关注方法,同时还关注结果,关注了与以往知识的不同点,好!但这个问题该如何解释得通俗易懂呢? 本课的两道例题并未涉及到将小数除以小数的计算题转化为小数除以整数这种类型
7、,所以许多学生在学完例题后错误的以为一个数除以小数只能转化为整数除以整数。针对这一现象我补充了专项针对性练习:说说在计算下列除法算式时该怎样移动小数点? 5.98/0.23 19.76/5.2 21/1.4 1.9/0.045 通过这些有针对性的练习帮助学生突破教学难点,尽快掌握方法,教学效果较好!第四课时商的近似数教学反思: 本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时,许多学生装都忘记了一看,二移的步骤.所以在设计巩固练习时应增加小数除以小数的练习
8、 其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。第五课时小数除法的练习课堂小记: 我将练习第8题与第3题结合起来教学,使学生对除法算式变化的几种情况有一个系统的了解。第8题是根据商不变的性质填空,第3题第1小题则正好可以作为巩固反馈练习来完成。
9、第3题第2小题是被除数不变,除数扩大商缩小的情况,我还在这里补充了除数不变,被除数扩大商也随着扩大的练习,使这部分知识系统化。当这些讲完后顺水推舟地进行第12题.200、100+X300虽然含有未知数,却是不等式,从而明确一个式子如果是方程必须同时具备两个条件,教学效果非常好。但在作业中如何看图列方程还需加强指导。如教材62页第3题就有许多学生列出了将X单独放在等式一边的方程。这里教师不仅要向学生说明列方程解决问题时的常规要求,还要在比较不同方程的数量关系中使学生发现按顺向思维列的方程最容易理解。学生质疑:在列方程解决实际问题是,学生问“4028=X既含有未知数又是等式,为什么不能这样列方程呢
10、?”作为教师该如何回答更准确呢?第二课时教学反思:作为常规课,今天既没有课件、也没用天平、仅用4张挂图和一块小黑板,但教学效果一样的棒,学生在课堂中十分投入,且整体掌握情况非常好。从课前预习情况来看,“天平保持平衡的规律1”学生理解起来较容易,但如何顺利过渡到难度相对较大的“天平保持平衡的规律2”呢?我在此处精心设计了过渡语, “刚才咱们是在天平的两边同时增加或减少同样的物品,如果这次天平两边增加或减少的不是同样的物品,又该怎样才能使天平保持不变呢?请大家认真观察、努力思考,比一比谁的脑子灵,能发现其中的奥妙。”这样通过言语提醒学生注意规律1与规律2两者在变化中的区别,同时也提请所有学生注意观
11、察与思考。这里,教师与学生的对话语言使教学环节不再支离破碎,教师与学生的对话语言使教学观察思考的指向性更明确,教学与学生的对话语言使学生的注意力高度集中。第三课时教学后记: 今天我对课时安排及教学设计均做了较大调整。原订计划是第三课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第四课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第三课时完成“方程的解”及“解方程”概念教学、会解形如XA=B的方程,掌握检验的格式;第四课时只完成乘除法方程的解法。其次对于教学设计也做了相应处理,将57页的内容适时穿插到了例1的学习过程之中。 为什么我会做如此改动呢?主要基于以
12、下三点原因:1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。2、教材57页做一做中要求学生检验方程的解是否正确,但规范的检验格式却不在本页,而在58页。3、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。 根据以往教学经验,知道解方程的书写格式是一大难点,所以在前天晚上就在脑子中开始酝酿如何用儿歌帮助学生突破难点。今天上课一试,效果确实不同凡响。儿歌如下: 解方程首先要写“解”, X每步都不能离, 所有的等号要对齐, 检验的习惯要牢记。按调整后的教案实施教学,效果比较理
13、想。不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅一人书写格式有误,一人方法掌握不牢。第四课时教学后记: 有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如ax=b及ax=b方程。 本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理
14、解。 基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的性质来解答时,全班就仅剩1名同学(林晓蒙)尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式
15、的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5X=5”,这可真是越变越复杂。 值得思考的是,如果必须两教ax=b及ax=b两类方程,你们觉得是按加减乘除法各部分之间的关系教好呢,还是按等式的性质教学好呢?第五课时教学反思: 虽然教师用书上明确写出:本课是学生第一次接触列方程解答问题,对将所求数量设为x,对未知数参加列式,都会感到不习惯。为了分散难点,这里暂不要求写设句。但考虑到列方程解决问题时“X”代表含义不明,且与稍后学习的规范格式不符,因此在教学中适当提高了作业书写格式要求,反馈情况良好。 由于本班近1/3的学生分析数量关系能力较差,特别是对于“XX
16、比XX多(少)”的条件,无法正确写出等量关系式,所以下次再教时在练习环节中会补充看下列句子写出等量关系式的练习。如:今年比去年长高了8厘米。第一根比第二根短3米。现价比原价优惠了45元长江比黄河长835千米。要先结合线段图帮助他们学会找准标准量,与较大数(较小数),再逐步由形象直观到脱离线段图仅凭文字也能抽象出正确数量关系式。第六课时教学反思:1、 从课堂反馈来看,本课的导入问题设计不太合适。当问“想要知道每分钟浪费的水,你能想到什么办法”时,学生回答拿一个容器接水龙头的滴水,1分钟后用工具测量所接水的质量。如果按学生的方法已经能够直接测量出结果,那还需要列方程解答吗?所以建议先出示“一个滴水
17、的水龙头浪费水,同学们拿桶接了半小时,共接了1.8千克水。”然后请同学们思考知道这两个条件可以求出什么问题,如何用算术方法解答,并说明列式理由。这样既能够直奔主题,又能够使学生主动思考三个数量之间的关系。2学生质疑“我想知道这个水龙头1小时共浪费多少水”,教师以这个问题不是咱们本节课研究的重点,只请一名学生口头列式并计算出结果后即一笔带过。其实,这里可适当拓展,让学生也试着分析其数量关系式。3学生在新授前通过预习共提出了以下五个想要了解的问题“我想知道这个水龙头1小时共浪费多少水”、“怎样求每分钟滴水量为多少”、“为什么要将1.8千克要化成克”、“列的方程是不是已经学过的”“这题除书上的解法外
18、还有没有其他解法”5个问题。我在新授前解决了第1个问题,紧接着我将学生的问题按照教学的顺序重新进行了编号,在教学中接号依次解决。校领导建议这些问题不必编号,当教师进行到某个教学环节时,适时指明所需要解决的相应问题即可。4在评课时,校领导首先让我自己谈一谈本课最成功与失败之处。当时,我就谈到学生质疑的水平还有待提高,他们只重结果,却没有刨根问底的精神。大家普遍只关注到怎样解决这一实际问题,却少有人去关注为什么可以这样列方程(算式)。在本课的教学中,我是在引导学生读题后,要求学生去分析三种数量之间的关系,再选择其中最喜欢的一种列方程或算式解答。等量关系的引入很被动,学生解决也很被动,此处他们的学习
19、热情较质疑时明显下降。如何调整教学,能够使他们的情绪始终高昂呢?校领导建议:在教学中教师应该再大胆些,放得更开些,由于有例3的学习作基础,这里可以放手让学生先尝试解答例题,不会的学生可以建议他们翻开书本自学,其他学生则独立完成。在全班交流时,通过追问的方式将三种数量关系式一一呈现出来。这样的学习就是自主探究式的学习,这样的学习,学生学得更积极主动。5、当教学完三种不同解法后,我请学生对不同解法进行点评,他们补充并完善了板书中的设和答,我也就顺手将答板书在黑板上,最后才对结果进行了验算。其实这种做法不严谨,应该先引导学生验算完后再写答,因为如果在难处中发现有错可以修正,不能写完答后再验算。再教改
20、进设计:补充复习环节,请学生思考要求下列问题必须知道哪两个条件:还剩多少米布?要求速度平均每天跑多少米?平均每分钟浪费多少水?由最后一个问题直接引入本课的学习。这样不仅可以帮助学生提高分析数量关系的能力,同时能够顺畅地引入新课的学习。3.稍复杂的方程第一课时教学反思: 本节课担负着双重任务,不仅要引导学生正确分析等量关系,学会列方程,同时还要教会他们解形如axb=c的方程,所以在教学过程中老师要注意节奏的调控,重难点处应把握好轻重缓急。 在尝试用算术方法解答此题过程时,我班学生错误频频。有的用202-4,还有的用(204)2。当然,也正是由于有了这些错误才使得学生对方程充满期待,正是因为这些错
21、误才使学生倍感方程的“好”、“顺”、“易”。所以,错误并不可怕,合理利用它可以成为课堂的“催化剂”、“助动器”。 在教学例题时,我根据学生思维特点将教材中介绍的方程“2X20=4”改为了“2X4=20”对学生进行重点指导。因为根据条件“白色皮比黑色皮的2倍少4块”学生更容易分析得出“黑色皮的块数24=白色皮的块数”的等量关系式 教学困惑:当一题多解时,教材如果只呈现一种解法时,这种方法往往是其中最简洁、最容易理解、更值得推荐的方法。可这一课为何会采用“黑色皮的块数2白色皮的块数=4”呢?难道这个关系式比其它两种更好理解吗?第二课时课后反思: 通过昨天课堂练习发现,方程仅仅在例题基础上稍加变化许
22、多学生就束手无策。“4X39=29”这类方程学生总体掌握情况不太好,所以特别在今天基础练习环节中补充相应习题进行辅导。但在教学中发现其实只需稍加点拔,学生便可很好掌握。为何学生处处都这么“依赖”老师呢?难道只有老师教过的题他们才会解答吗?我该如何让学生主动、大胆、正确地由“依赖”逐渐走向成熟呢? 图文结合是课标教材呈现问题的一种新方式。今天在做练习十二第6题时,发现由于图中“亚洲面积4400万平方千米”字体较小给部分学生造成影响,所以再教时要引导学生看清图中的数学信息,或教材再版时将字体适当扩大。第三课时课后反思:学生原有基础较差,反映在本节课上最大问题是难以找准数量间的等量关系,所以教材中的
23、两种等量关系学生更偏爱第一种“苹果的总价+梨的总价=总钱数”,它更好理解。但在实际解方程过程中,(2.8+X)2=10.4正确率要明显高于2X+2.82=10.4。如学生中存在以下错误: 2X+2.82=10.4解: 2X+2.822=10.42 2X+2.8=5.2看来一节课完成两大教学任务对于本班学情而言确实有一定难度。下次再教时,我会根据学情灵活确定教学内容。如有困难,将本课分为两课时完成,第一课时完成解方程,第二课时再完成列方程解决问题。第四课时课后反思: 复习题的设计找准了本课新知的生长点,习题不仅为例题中设哪个量为X作了铺垫,同时还扫清了含有两个X加减法计算的障碍。但在教学中,由于
24、复习耗时较长,所以巩固拓展练习没能在课内完成。下次再教时,我会对复习内容综合考虑,适当取舍。保留其中的精华,准备将第4题删掉,直接进入例题的学习,然后由例题稍加变化,呈现变式练习,使学生了解已知相差数,求两个数分别是多少的练习。 从作业反馈来看这是学生的难点。如教材72页第8题:妈妈今年的年龄是小明的3倍,妈妈比小明大24岁,小明和妈妈今年分别是多少岁?有的无法找准数量关系,不能正确列出方程。还有的找准了数量关系“小明的年龄+24=妈妈的年龄”,但列出来的方程X+24=3X等式两边都有X不会解。看来教材65页不用“黑色皮的块数4=白色皮的块数”,而用较大数较小数=相差数作为推荐学生掌握的数量关
25、系式是有一定的道理。第五课时 稍复杂方程的练习课后反思: 教案仅仅是教学预案,它应该随时根据学生的情况进行调整。今天在教学中,我对原订指导练习的内容进行了适当调整。首先,根据学生昨天掌握情况将第8题作为指导练习,重点引导学生分析已知两数差,求两数分别是多少用“较大数较小数=相差数”的等量关系式。针对部分学生习惯根据已知条件“妈妈比小明大24岁”顺势写等量关系的现状,补充讲解了X24=3X这类方程的解法。 X+24=3X X+24X=3XX 2X=24 2X2=242 X=12经过此题的讲解及相应习题的练习,学生起色较大。 其次,我将“鸡兔同笼”作为本课的另一重点指导练习。因为校外培优班在教学此
26、类习题时多用假设法,学生分析理解难度较大。但如果运用方程来解答,数量间的关系清晰明了,学生解答起来难度也易如反掌。重点指导此题,并非它难度大,而是在这一过程中,能够帮助学生感受、体验到方程的好处。 改进措施下次再教时,我会在基础练习中补充分析条件找出等量关系的练习。整理和复习课后反思:本课教学内容应分两课时完成。第一课时完成方程概念及解法的复习,第二课时完成用方程解决问题的复习。 第一课时,我将教材74页第1题中部分方程适当修改与补充。如将X+4.8=7.2改为了4.8+X=7.2。因为在实际教学中发现当补充讲解了4.8X=1.2的练习后,学生容易将加减两类方程解法混混。虽然都是等号左边为X,
27、但4.8X=1.2的第一步是方程左右两边同时加X,即4.8X+X=1.2+X。而4.8+X=7.2,则是方程左右两边同时减4.8,许多学生由于受知识的负迁移,此题错误类推为4.8+XX=7.2X,反而使方程复杂化。针对上述现象,特别将教材中的几道加法方程进行了调整。 其次,在平时练习中发现学生对aXbX=c与aXb=c两类方程也容易解法混淆。特别是当ab时,学生往往容易将第二类方程当成第一类方程来解。如12X9=87就有部分学生做成“3X=87”,因此在今天的解方程中也特别增加了对比练习,帮助学生发现其外在与解法上的区别。 在解决实际问题的教学中才发现第一课时只定位于如何解方程是不合理的,其实
28、用字母表示数也值得挖掘,应该重视。如用字母表示计算公式,它不仅能够体现字母简明易记、便于应用的优势,还能够帮助学生回忆长方形、正方形的周长、面积计算公式,为下一单元用字母表示多边形面积的公式作好铺垫,一举多得。如果有了第一课时的铺垫,我相信在今天教学75页第4题时,学生会顺畅得多。 其次,虽然练习中涉及到稍复杂方程例1的类型,但由于呈现方式是购物发票,因此数量关系的分析较简单,所以可补充相应练习。如:光每秒能传播30万千米,这个距离大约比地球赤道长度的7倍还多2万千米。地球赤道长多少万千米?粉色的思考:现在感觉用等式的基本性质解题,写起来特麻烦,记得初中解方程是用移项的方法,前几天请教初中数学
29、老师,他说现在还是用移项解方程。不知用等式的基本性质的优点到底在哪?解方程组? 困惑! 初中解方程移项的根据是什么?其实就是等式的基本性质。就这一点与小学的解法完全不矛盾,而且可以是说一致的。如: X+3=9X+33=93(这是小学的解答过程) X=93(这是初中的解答过程) 初中移项时,为什么方程左边的“+3”移动到方程的右边就变成“3”了呢?原来是为了使方程的左边仅剩“X”,所以等式两边同时“3”。在这里,初中的方程写法仅仅是将左边“+33”省略不写了。但解题依据都是等式的基本性质。第五单元 多边形的面积第一课时平行四边形面积的计算教学反思: 前三个单元我一直要求学生每课预习,这种做法使得课堂内教学效率大大提高。但今天的内容我同样布置了预习,效果却不太理想。分析原因可能是预习后学生的动手操作少了一份探索成功后的欣喜,少了一些不同剪拼法的交流,学生积极性不高。针对这种现象,我准备采取两种不同策略进行对比实验。三角形的面积我不要求学生预习,上课时根据学生情况灵活调控。梯形的面积我仍旧请同学们预习,但在预习中我布置一项作业,请他们思考,除了教材