导数及其应用导学案(题型归纳、复习)(共8页).doc

上传人:飞****2 文档编号:13694375 上传时间:2022-04-30 格式:DOC 页数:8 大小:582KB
返回 下载 相关 举报
导数及其应用导学案(题型归纳、复习)(共8页).doc_第1页
第1页 / 共8页
导数及其应用导学案(题型归纳、复习)(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《导数及其应用导学案(题型归纳、复习)(共8页).doc》由会员分享,可在线阅读,更多相关《导数及其应用导学案(题型归纳、复习)(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第三章导数及其应用(复习) 学习目标 提高学生综合、灵活运用导数的知识解决有关函数问题的能力. 学习过程 一、课前准备1.导数的几何意义:_2导数的定义:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即3切线:是曲线上点()处的切线的斜率因此,如果在点可导,则曲线在点()处的切线方程为3导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数, 4 常见函数的导数公式:1.;2.;

2、3. ;4.; 5.;8和差的导数: 9积的导数: , 10商的导数: 1.若,求2.下列函数的导数 典型例题1.求曲线的切线例1:求曲线在点(1,1)处的切线方程.跟踪练习1、已知直线是的切线,则切点坐标为_2、函数的图像在处的切线在x轴上的截距为_2.利用导数研究函数的单调性1利用导数求函数的单调区间(1)求;(2)确定在内符号;(3)若在上恒成立,则在上是增函数;若在上恒成立,则在上是减函数1设函数,其中常数()讨论的单调性;跟踪练习1、已知函数,讨论函数的单调区间;设函数在区间内是减函数,求的取值范围2、已知函数,讨论的单调性.2已知函数的单调性,利用导数求参量例(08-湖北-7)若上

3、是减函数,则的取值范围是C A. B. C. D. 跟踪练习1、已知,函数在上时单调函数,则的取值范围是_+2、已知函数 (1)若函数在区间上不单调,求的取值范围3.利用导数研究函数的极值1极大值: 一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作, 是极大值点2极小值:一般地,设函数在附近有定义,如果对附近的所有的点,都有,就说是函数的一个极小值,记作,是极小值点3极大值与极小值统称为极值()极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小()函数的极值不是唯一的即一个函数在某

4、区间上或定义域内极大值或极小值可以不止一个()极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 ()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4判别是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5 求函数的极值的步骤: (1)确定函数的定义区间,求导数(2)求方程的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查在方程根左右

5、的值的符号,如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则在这个根处无极值6函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值在开区间内连续的函数不一定有最大值与最小值 函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个7利用导数求函数的最值步骤:求在内的极值;将的各极值与、比较得出函数在上的最值3: 函数的极值与最

6、值例6:(08-山东-文)设函数,已知和为的极值点()求和的值;()讨论的单调性;()设,试比较与的大小4:求参变量的范围例7.(08-安徽)设函数且()求函数的单调区间; ()已知对任意成立,求实数的取值范围。已知函数,其中()若在处取得极值,求的值;()求的单调区间;.()若的最小值为1,求的取值范围.5:图象的交点形如函数图像与轴交点个数问题,应先求出,再求出极值并画出函数的图像,从而根据极值的符号判断交点的个数例9.(08-四川卷22)已知是函数的一个极值点.求; 求函数的单调区间;若直线与函数的图象有3个交点,求的取值范围。6:切线综合例10.(07-全国-22)已知函数.()求曲线

7、在点M处的切线方程;()设,如果过点可作曲线的三条切线,证明:.7、定积分的应用(1)概念设函数f(x)在区间a,b上连续,用分点ax0x1xi1xixnb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分,记作:,即(i)x。这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。(2)定积分的性质(k为常数);(其中acb。(3)定积分求曲边梯形面积由三条直线,轴及一条曲线)围成的曲边梯形的面积。如果图形由曲线(不妨设,及直线围成,那么所求图形的面积。1、定积分的计算1、=_;2、已知为偶函数且=8则=_;3、=_.;4、若,则=_;2、定积分求面积 例1 (1)求由曲线与x 轴在区间上围成的图形的面积;(2) 计算曲线 与 直线 所围成图形的面积 8、利用导数证明不等式利用导数证明函数不等式,形如证明(或的图像恒在的图像的下方),应构造函数,再证明成立. 1、利用函数的单调性,证明下列不等式 (1) (2) (3) (4) 2、 (1)求证(2) 求证 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁