《高中解三角形(共11页).doc》由会员分享,可在线阅读,更多相关《高中解三角形(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上1、正弦定理:(是外接圆半径)注1:一般在已知两角一边(包括两角夹边和两角及其中一角的对边)和已知两边及其中一边的对角时使用正弦定理;注2:使用正弦定理可以把次数相等时的所有边转化为对应角的正弦值或把正弦值转化为其对应边;注3:利用正弦定理,我们得到:;注4:利用正弦定理的结构,我们可以判断满足已知两边及其中一边的对角时,三角形解的个数,如图:已知角为锐角时(1)当它的对边,一个(2)当它的对边,没有(3)当它的对边,两个(4)当它的对边,一个已知角为直角或钝角时(1)当它的对边,没有(2)当它的对边,一个注5:三角形中2、余弦定理:,注1:一般在已知两边及夹角或已知
2、三边时常用余弦定理,如果是两边及其中一边的对角,可以建立一元二次方程求解;注2:判断三角形是锐角、直角或钝角时可以利用两边的平方和减第三边的平方的正负来考虑;注3:一个常见的结论:或注4:正余弦定理可以实现边和角的互化。1直角三角形中各元素间的关系:如图,在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:如图6-29,在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:A
3、BC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;(3);(4)2R2sinAsinBsinC。(R为外接圆半径)(5);(6);(7)rs。4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解
4、三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C = ;(2)边与边关系:a + b c,b + c a,c + a b,ab c,bc b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的
5、变形形式有:a = 2R sinA,。5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。r为三角形内切圆半径,p为周长之半。(3)在ABC中,熟记并会证明:A,B,C成等差数列的充分必要条件是B=60;ABC是正三角形的充分必要条件是A,B,C成等差数列且a,b,c成等比数列。(三)典型例题1:正、余弦定理(2009岳阳一中第四次月考).已知中,则( )
6、A. B C D 或答案 C 例2(1)在ABC中,已知,求b及A;解析:(1)=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即2:三角形面积例3.(2009浙江理)(本题满分14分)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值解 (1)因为,又由得, (2)对于,又,或,由余弦定理得, 例6(2009全国卷理)在中,内角A、B、C的对边长分别为、,已知,且 求b 分析::此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) 过多的关注两角和与差的正弦
7、公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.解法一:在中则由正弦定理及余弦定理有:化简并整理得:.又由已知.解得. 解法二:由余弦定理得: .又,.所以又,即由正弦定理得,故 由,解得.评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练4:三角形中求值问题例4.的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12si
8、n2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos取得最大值为。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。例5.(2009浙江文)(本题满分14分)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值解() 又,而,所以,所以的面积为:()由()知,而,所以所以5:三角形中的三角恒等变换问题例5.在ABC中,已知A、B、C成等差数列,求的值。解析:因为A、B、C成等差数列,又ABC180,所以AC120,从而60,故tan.由两角和的正切公式,得。所以。点评:在三角函数求值问题中的解
9、题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。6.正、余弦定理判断三角形形状例11在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)0,AB点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径北2010ABC7:正余弦定理的实际应用例1在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30东,俯角为30的B
10、处,到11时10分又测得该船在岛北60西、俯角为60的C处。(1)求船的航行速度是每小时多少千米;(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?命题意图 本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力 知识依托 主要利用三角形的三角关系,关键找准方位角,合理利用边角关系 错解分析 考生对方位角识别不准,计算易出错 技巧与方法 主要依据三角形中的边角关系并且运用正弦定理来解决问题 解 (1)在RtPAB中,APB=60 PA=1,AB= (千米)在RtPAC中,APC=30,AC= (千米)在ACB中,CAB=30+60=90(2)DAC=9060=30sinDCA=sin(180ACB)=sinACB=sinCDA=sin(ACB30)=sinACBcos30cosACBsin30 在ACD中,据正弦定理得,(四)易错题略巩固典型例题,保持理性,认真答题即可。专心-专注-专业