《华师大版八年级(上)数学导学案(共84页).doc》由会员分享,可在线阅读,更多相关《华师大版八年级(上)数学导学案(共84页).doc(84页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 第12章 数的开方 导学方案 第一课时课 题课型学生姓名上课时间12.1.1 平方根(1)新课学习目标(1) 了解数的平方根的概念,会求某些非负数的平方根。(2) 会用根号表示一个数的平方根。重点数的平方根的概念,会求某些非负数的平方根。难点经历知识产生的过程,探索新知识学前准备学习指导:一、自主学习: 【导学提纲】1.我们已学过哪些数的运算?2.加法与减法这两种运算之间有什么关系?乘法与除法之间呢?3.什么是平方根?一个数的平方根如何表示呢?什么是算术平方根?什么叫开平方?4、一个数的平方根有什么特点?5、要剪出一块面积为25 cm2的正方形纸片,纸片的边长应是多
2、少?【预习填空】1、如果一个数的 等于a,那么这个数叫做a的 。2、一个正数必定有 ,它们互为 ,其中正数a的 叫做a的算术平方根;0的平方根 (有且只有 个);负数 ;3、一个正数a的平方根记作 (符号表示),其中 是算术平方根, 称为被开方数;4、求一个 ,叫做开平方,将一个正数开平方,关键是找出它的一个 ;5、练习:(1)( )2=25 正数25的平方根是 ,可表示为 =5;(2)( )2=0.09 正数0.09的平方根是 ,可表示为 = ; (3)( )2=16/25 16/25的平方根是 ,可表示为 = ;(4)( )2=0 0的平方根是 ,可表示为 = ;(5) 负数 , -4 。
3、6、已知一个数的平方等于10000,那么这个数是 .【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字): 二 展示提升1、填空(1) 144的平方根是 ; (2) 0的平方根是 ; (3) 的平方根是 ; (4) 4有没有平方根?为什么?2、求下列各数的算术平方根。 (1)121 (2)2(3)64 (4)102;(5)0;3、求下列各数的平方根:(1)81;(2)0.09;(3)1600;(4)49/25;(5)0.0256;4、下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由.(1)64;(2)0;(3)(4)2三、合作交流:如果我们知道了两个平方根中的一个
4、,那么是否可以得到它的另一个平方根呢?为什么? 知识回顾与小结1、平方根的性质:一个正数有 个平方根,它们互为 ;0有一个平方根,它是 ;负数没有 2.一个非负数a的平方根的表示法:当a0时,a的正的平方根用符号“”表示,a的负的平方根用符号“”表示,这两个平方根合起来可以记作“”;其中a叫做被开方数,2叫做根指数;根指数为2时,一般略去不写3.求一个数的平方根,可以通过平方运算来解决四、达标检测:1、下列说法正确的个数是( )0.25的平方根是0.5;-2是4的平方根;只有正数才有平方根;负数没有平方根 A1 B2 C3 D42求下列各数的平方根0,17,(-2)2,2,-163的算术平方根
5、是( ) A4 B4 C2 D24求下列各数的算术平方根(1)0.0025; (2)(-6)2; (3)0; (4)(-2)(-8)5下列说法中错误的是( )A是5的平方根 B-16是256的平方根C-15是(-15)2的算术平方根 D是的平方根五、课外作业: 六、学后反思:你都学到了些什么?有哪些地方还是让你感到疑惑的? 数的开方 导学方案 第二课时课 题课型学生姓名上课时间12.1.1 平方根(2)新课学习目标1、正确理解平方根的概念的意义和平方根的表示方法基础上,进一步掌握算术平方根的概念及其表示方法;2.对于表示的算术平方根中的a的条件和的本身的意义作合理性的说明;重点理解平方根的概念
6、的意义难点理解平方根的概念的意义学前准备学习指导:一、自主学习: 【导学提纲】根据下面问题,用8分钟时间仔细阅读教材P45的部分,请勾画出重要内容,并在不明白的地方作上符号,或把问题写下来1.在(-5)2、-52、52中,哪些有平方根?平方根是多少?哪些没有平方根?为什么?2.求0.49的平方根的运算可记作_ _ _;3. ;正的平方根叫做它的 ;4. 正数a的正的平方根叫做a的 记作 ,读作“a的算术平方根”这里强调两点:(1)这里的不仅表示开平方运算,而且表示正值的根(2)这里中有两个“正”字,即被开方数必须为正,算术平方根也是正的(0除外)特别地,0的平方根也叫做0的算术平方根,因此0的
7、算术平方根是0即从以上可知,当a是正数或是0时,表示a的算术平方根5. 说出平方根的概念和性质【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字): 二 展示提升1.下列各式中哪些有意义?哪些无意义?为什么?2.求下列各数的平方根和算术平方根:3.求下列各式的值,并说明它们各表示的意义:4. 解方程 (1)x2 =4 (2)25x2=36 (3) (4)(x-1)2=495、x为何值时,下列各式有意义: 三、合作交流:【问题1】9的平方根是 ,9的算术平方根是 , 表示的意义是什么?【问题2】根据平方根的性质判断,若有意义,则x .(取值范围)练习:1、当x 时, 有意义。;当x
8、 时, 有意义。 2、若(a+2)2|b1|0,则abc 3、a,b在数轴上的位置如图所示,则下列各式有意义的是( )0baA、 B、 C、 D、4、求下列各数的平方根和算术平方根:(1) 36 ; (2) 2.89 ; (3) (4)0; (5)-16*5、已知:y=+5,求2x+3y的值*6已知x的平方根是2a+3和1-3a,y的立方根为a,求x+y的值四、达标检测:1.下列说法正确吗?如果不正确,那么请你写出正确答案.(1)0.09的平方根是0.3;(2)52.(1) 在哪两个整数之间? 3. 0.25的平方根是 ;的算术平方根是 , 的平方根是 。4. ,= ,= 。*5. 已知(x-
9、1)2+5+x-y+z+1=0,求x+y+z的平方根五、课外学习:课本P7 习题12.1: 4、5 六、学后反思: 第11章 数的开方 导学方案 第三课时课 题课型学生姓名上课时间12.1.2 立方根新课学习目标(1) 了解立方根的概念,会用根号表示一个数的立方根。(2) 能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。重点立方根的概念,会用根号表示一个数的立方根。难点经历知识产生的过程,探索新知识学前准备学习指导:一、自主学习: 【导学提纲】根据下面问题,用8分钟时间仔细阅读教材P57 的部分,请勾画出重要内容,并在不明白的地方作上符号,或把问题写下来1、什么叫立方根?如何用根号表
10、示一个数的立方根? 2、什么叫开立方?如何求一个数的立方根?举例说明、【预习填空】1、如果一个数的 ,那么这个数叫做a的立方根;任何数都有立方根,并且只有 个;2、数a的立方根,记作 ,读作: ,其中a叫做 ,1 称为根指数;求一个数的 ,叫做开立方;【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字): 二 展示提升1、填空:(1)27的立方根是 ;(2)27的立方根是 ;(3)0的立方根是 ;2下列说法中错误的是( ) A负数没有立方根 B1的立方根是1 C的平方根是 D立方根等于它本身的数有3个3、求下列各数的立方根:(1)216;(2) -0.027; (3) ; (4)
11、0.125;(5) ; (6) 1 331*4、已知x的平方根是2a+3和1-3a,y的立方根为a,求x+y的值三、合作交流:问题1:(1)、正数有几个立方根? (2)、0有几个立方根? (3)、负数有几个立方根?(4)、从以上问题中你 ;问题2:(1)、表示2的立方根,那么()3等于多少呢? 又等于多少呢? (2)、表示a的立方根,那么()3等于多少呢? 又等于多少呢?问题3:数a的平方根和立方根相同吗?怎么表示呢?四、达标检测:1、写出下列各数的立方根;(1)24 (2)125 (3)0.008 (4)02、若一个偶数的立方根比2大,算术平方根比4小,则这个数是_3、现有一只体积为216c
12、m2 的正方体纸盒,它的每一条棱长是多少?4利用立方根来解下列方程 (1)x3-2=0; (2)(x+3)3=4五、知识小结:任何数(正数、负数或零)的立方根必定只有一个;数a的立方根,记作,读作“三次根号a”。a称为被开方数,3称为根指数。例如x3=2,则x是2的立方根,即x=;而238,则2是8的立方根,即2。六、拓展阅读:快捷求立方根的“魔术”请别人想好一个两位数,然后暗算出它的立方,告诉你,你就能猜出这个数。窍门是熟记19这九个数的立方就可以了:原数12345678910立方数1827641252163435127291000如:把50653告诉你后,根据个位数字是3,就知道50653
13、的立方根的个位数只能是7,把50653的百、十、个位数字去掉,只留下开头的两个数字50介于哪两个数的立方之间?因为27=33 50 43=64,所以十位数是3,从而这个两位数是37。又如: 由 83636 93 ,确定十位数是8,由个位数字是6可立即确定两位数的个位数是6,即所猜两位数是86。七、课外学习:课本第7页“习题16.1” 第2、5题八、学后反思: 第11章 数的开方 导学方案 第四课时课 题课型学生姓名上课时间简单二次根式的化简新课学习目标(1) 初步了解二次根式的概念(2) 会运用二次根式的性质化简被开方数中不含字母的简单根式。重点化简二次根式。难点掌握二次根式学前准备学习指导:
14、一、温故知新: 1、平方根有什么性质?一个数a的平方根如何表示?2、立方根有什么性质?一个数a的立方根如何表示? 3、表示什么?a需要满足什么条件?为什么?概念解读二次根式概念:形如(a0)的式子叫做二次根式. 【说明】 二次根式必须具备以下特点; (1)有二次根号; (2)被开方数不能小于0。 请同学们举出二次根式的几个例子,并判断,(a0).(an,a0,有 .即:同底数幂相除,底数 ,指数 。【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字): 二 展示提升1、计算:; 2、计算:; 3、若,则x的值为 。三、合作交流:【问题1】已知:,求和的值。【问题2】计算: ; ; ();思考:当m、n为正整数,m=n,a0,有 。由此可得: ,即 。(无意义)完成课本P23练习1、2;P23习题13.1 5、6知识小结1、同底数幂的除法法则是: ;用公式表示为: (m、n为正整数,mn,a0)。公式推广: (m、n、p为正整数,mn+p,a0)。公式逆用: (m、n为正整数,mn,a0)2、任何不等于0的数的0次幂都等于1,即 。四、达标检测:1、下列运算正确的是( )(A)(B)(C)(D)2、若,则 ;3、若,则