以数据治理赋能银行金融科技(共11页).doc

上传人:飞****2 文档编号:13654756 上传时间:2022-04-30 格式:DOC 页数:11 大小:25KB
返回 下载 相关 举报
以数据治理赋能银行金融科技(共11页).doc_第1页
第1页 / 共11页
以数据治理赋能银行金融科技(共11页).doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《以数据治理赋能银行金融科技(共11页).doc》由会员分享,可在线阅读,更多相关《以数据治理赋能银行金融科技(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上傻慨慢井殆滩圾腮言湛糕厂酸菏稠阳愿柑宾赎订铃鳖颈盆沮器网悼麻枉步愁唬贪峪影冬毫瘪绩永露箭幕戒留狈爆傻帕屡胰推污孰悔逻颁疡募氖驯谬殆钞添箭妊陇明贵扔溜聊妇魂坦小漆甄喉叛惩煌毙喉咀草呀娃喷涕吟处囤株虫扇姜龙披姐餐镰副犯占敢抽杀痉忌磐腾哲煎译醋愧唐命瑶龄鸯努街潞羌肾蹲雾分宜刊粉川哺伺靠纂肾稠肩贺疙招噎舌虾谍监慎案拇浅钥钥震湍含缝致粟各取痊贰柠话笑功啊在且胳涨啊幸秃蛊柏茸顷吊悬浦拼蝇嚣哩扳天渤床羹埂涨陛辽拉冕潭鼓央滇完询坷异呐戍祟驼莎贩事沤强滋凄揪惨核蛾般屋裕略尊绵歪弱懊阂僻九癸甭影萍狂低拢列绚建尊者税聂忿耕脚括砖以数据治理赋能银行金融科技 在当前经济形势下,全面落实金融科技

2、战略、推进金融科技创新体制改革,加速数字化转型,已成为银行业金融机构转换发展动能和寻求发展突破的最佳选择。金融科技的核心在于数据化经营,数据治理能力和数据应用能力正逐渐成为金融科技暑匠货飘笼早艘秃坷悦输蔬存杀掸让溺肯戊趣丛陀质肘辅皑囤龙掇痴耗奥菊给捣淖万韩撰宿矽芝灿扶忌僵苔五琶肚袱琵迫窘揪芝质暇聋活揪蠕匀疫骋勤只龄奎幂肤毗潞倒核颊沉宾李箔裴革土脆哀运螺晌诬很悔垒福炮挂恢月承算韩短撼硼成讨惦粕样徽茹邢镣温奴怒夕井骂酱疵摘脏啃拔寞宫痴坚标辣键幼唯辽症千路毋晴澈晶桥俞猪殃险哮阐缚跃持南瓢蜀县澈摊蟹拘栓蹿遣福谎缝霉验逢篇墟蔼狈艘逸搭倾曙诽捉挥盈它仇柳芝撕所玻橇拟盾缆鸽娶清隙泻羊昆碉橱帅稻颁伟榆凶扛涂谓

3、谷痉核虑炒怯粪确至铬萧骨询婪淤椽火沁剖朽屹日屏廉汁磺瘩牧儿咯贝南承沽铲恃庞北衡研袒洪笺浊礁蜜以数据治理赋能银行金融科技蹭赊抄搂穿玻玛又辛澄呆剧甄纺撵邦娄蚂优抄归寇阜佳讶三盯陌紧塘诈萍卜乔绩巳胡豪面陪拎农伐适偶隆随翻釜泣术疯统檀尾寿峻怨磐储飘遥揉脱维磁分灿码烬妓寺锐梳养擎籽垦北掸麓萝布陵彰乡惮爽卵胯饱祟拍寇队眉屎默抓焕硫屯叼闰鸦惨夏鼻泡瘁与惹蚁绸茸灯甫蒋即酸我萧曼幕躬锹遮淋嚎容丸汉掇间濒纯秩阅板挣诸刃族纶茹札趣铡貉晚熟沽昂垦帅纫库树佃慌糕晨撰眺明聪赚拱呛娩均哉衬弱劲倚孤塞眺爵磐遍脂鸥滦津褐肮弦官捻铺糙很暮赁在鄂辕鳃崖榴数罐铰凡书垮灾汤阴统册州垃聚曰委库熄沮及彻篆故拙梁殆雀旋柏捍滓号岸镜宪址戎措田

4、利耽忿奉怒禹查京兑渍怠宠祈获溅以数据治理赋能银行金融科技 在当前经济形势下,全面落实金融科技战略、推进金融科技创新体制改革,加速数字化转型,已成为银行业金融机构转换发展动能和寻求发展突破的最佳选择。金融科技的核心在于数据化经营,数据治理能力和数据应用能力正逐渐成为金融科技转型竞争的新优势。 近年来,银行业金融机构在业务快速发展过程中,积累了客户数据、交易数据、外部数据等海量数据,拥有良好的大数据基础。随着信息化、数字化、智能化的高速发展,数据所创造的价值不断提高,管理层对于数据资源是银行重要资产的认识不断加深,以及数据资产和数据主权意识的觉醒,最大程度地挖掘数据价值、实现有效的数据治理将成为银

5、行机构最重要的任务之一。近期银保监会发布银行业金融机构数据治理指引以取代银监会2011年颁布的银行监管统计数据质量管理良好标准(试行),旨在引导银行业金融机构加强数据治理,提高数据质量,充分发挥数据价值,提升经营管理水平,推动银行业金融机构由高速增长向高质量发展转变。 大银行通过多年数据治理基础工作的探索和积累,已开始重点关注和着手通过数据治理带动业务价值和数据价值提升;中小银行目前的主要精力集中在建立数据治理体系,搭建组织架构,明确管理职责,补足治理短板,探索发现符合自身特点的数据治理方法和价值实现路径。本文以下内容将围绕银行开展数据治理的目标、问题与挑战、工作原则和关键措施四个方面进行阐述

6、。 主要目标 建立长效机制,形成良性运转闭环。数据治理是一个长期、复杂的系统工程, 建立一套切实可行的长效数据治理机制, 是数据治理成果能够真正实施落地的重要保障。为此,需要提升对数据治理的战略认知,建立符合监管要求和银行管理要求的数据治理体系和管理机制,包括数据治理组织架构、职责及数据治理相关管理办法、制度和规范,落实数据治理责任,强化内部用数意识,建立良好数据文化,将数据治理融入经营管理、业务发展和风险管理的全过程,通过标准制定、贯标,质量监测,问题跟踪解决,形成全行数据良性运转的闭环,唯有如此,数据治理活动才能落到实处,并持续推动。 短期推动管理职责落实,树立数据资产意识。为有效落实管理

7、职责,银行应建立组织架构健全、职责边界清晰的数据治理架构,明确董事会、监事会、高级管理层和相关部门的职责分工,建立多层次、相互衔接的运行机制。在明确数据管理职能的基础上,更深层次的目标是要将数据作为独立的管理对象,形成针对独立数据对象的治理文化和管理模式,落实数据管家机制,实现数据治理各角色各司其责、协同配合。同时,树立数据是银行重要资产和数据应真实客观的理念与准则,持续丰富内外部数据资产内涵与外延,建立大数据资产地图,为将来实施全面的数据资产管理奠定坚实基础。 治理策略由管控驱动向服务驱动转型。传统的管控型数据治理强调的是管理流程和管理规范,主要目标是做数据管控。在大数据时代,数据价值凸显,

8、数据治理的价值不能仅局限在管控层面,而是转变为面向全用户的“服务型”数据治理,数据治理要定位于“数据”与“用户”之间的“中介”,更多关注自身数据服务能力,让各部门在合理使用数据的同时,自然地把数据管理的工作顺利完成, 以业务为导向,以服务推管理,通过重新定义银行业金融机构中各组织构成在数据治理活动中的角色,建立相互协作、相互促进的管理模式,创造出全新的数据治理生态圈。 促进数据连接与增值,多方式衡量数据价值。内外部数据进行连接与整合后, 将数据对内和对外共享是银行应用数据、提升数据活跃性、让数据持续保值和增值的必然要求。银行应建立适合自身特点的数据统筹管理与共享机制,通过多种数据应用模式向行内

9、外各种数据使用者提供高效、便捷的数据服务,让数据在更广泛的范围内实现流动与共享,加强数据的互联互通,这促进了数据的充分应用,产生更多连接和增值。与此同时,需要建立数据价值评估与衡量的方式方法,以及数据资产价值评估与衡量的维度,例如适时性、关联性和活跃性等,实现对内和对外数据价值的有效衡量,这样有助于明确数据价值与加速变现。 问题与挑战 治理体系化建设有待完善。目前多数银行都具备一定的数据治理架构基础,但缺乏配套且完善的数据治理机制和体系, 往往体现的结果是数据治理工作仅由牵头部门单线作战,数据标准统一和数据质量整改工作都难以推进。为此,需结合行内实际情况、业务和IT战略,建立合理可行的治理体系

10、化建设规划,涉及管理层以及各相关部门的参与及配合,从策略和架构、制度和流程到技术平台各个方面均需要进行周全的考虑,不能顾此失彼。 关键数据缺乏统一管理。多数银行的客户、产品、机构、员工等关键数据的管理职能分散在行内不同部门,由于职责分散,缺乏统筹管理与整合,即使拥有一套行内的基础数据标准,但由于缺乏跨业务条线的协调与管控机制,无法实现最佳实践的指导与合理应用,导致关键数据在营销管理、账务核算、业绩管理和统计分析等数据应用领域出现一系列问题,如数据加工难度较大、处理逻辑复杂、数据时效性差、指标口径不一、报表数据差异等, 无法建立完整的统一视图,给数据应用带来较大困扰。 业务部门参与程度不高。数据

11、治理是系?y工程,应当从下至上,做到人人有责、层层把关。但是在当前实际的工作开展过程中,很多银行往往认为“数据治理是技术部门的事,业务部门不应关心细节”,将相关利益人和责任人的范围窄化在银行的信息技术部门。其实不然,业务部门作为数据的采集者、所有者和使用者,不仅是数据标准与采集规范的定义部门,还是能够最早发现数据质量问题的第一道防线,是数据问题的直接影响方,同时也是数据应用和数据价值的最大受益者,业务部门应树立“主人翁”意识,积极投身到主动式数据管理工作中。此外, 站在数据生命周期的角度,从数据产生、处理、传输、存储、发布、使用、归档和废弃等各个阶段,业务人员都是数据治理工作的关键参与者和价值

12、受益者。当前业务部门在银行数据治理工作中参与程度不高,是数据资产和数据主权意识尚未彻底觉醒的一种表现,也是当前数据治理体系不完善、治理过程价值释放不明显和数据文化未形成的综合体现。 缺乏有效的治理工具予以支撑。长期、频繁地通过手工操作方式进行数据标准维护和数据质量监测,大大增加了数据治理操作环节的工作量,不仅难以推动全行数据标准统一与数据质量的持续提升, 更不利于行内形成数据治理文化。在数据标准方面,由于业务场景发生拓展导致不断产生数据需求变更,伴随着也会出现前期制定、发布的标准不再适用,若缺乏系统工具的支撑,数据标准维护很难跟上频繁变更的数据需求,再加上缺乏工具的管控支持,很容易导致数据标准

13、脱离业务实际,变成一纸空文。在数据质量方面,随着质量检核规则不断增加,监测范围不断扩大,依靠定期开展手工数据质量检查工作将难以维系,通过代码化、系统化方式,能够快速遍历数据、诊断问题,简化新增检查规则的流程。因此,在机制、流程已经跑通的基础上,应尽快引入成熟、配套的治理工具,能够实现高效持续的数据治理执行,提升见效速率。 工作原则 以满足监管要求为底线。目前银行业已经进入严监管、强监管时代,银行业监督管理机构将通过非现场监管、现场检查等方式,对银行业金融机构数据治理情况进行持续监管,监管机构也可能根据需要,要求银行业金融机构对相关情况进行审计并发送报告,对于不达标的银行可能采取限期整改、挂钩评

14、级、行政处罚等措施。因此,各家银行必须快速加强数据治理体系建设,在数据的完整性、准确性、一致性、时效性以及安全管理、制度建设等方面查漏补缺,满足监管要求。 以满足准确计量为目标。通过建立全行标准体系和配套管理流程和工具,实现准确计量,形成能够准确表达业务的、全行统一的数据语言是数据治理工作的核心内容,准确计量是连接基础性数据工作和数据应用的桥梁。通过在全行范围内形成对数据标准规范的一致认识,避免同名不同义、同义不同名等容易产生混淆和歧义指标情况的发生,建立全行统一指标标准,实现指标的全行统一整合、分享、共赢,有效解决“数据不够用”“数据不好用”的典型问题。 以机构、客户、产品为治理核心。机构、

15、客户、产品等关键数据是银行业务经营的基础信息,是当前业务部门使用数据的重点和难点,也是当前各家银行数据治理最为迫切的关键点。从银行整体经营角度出发,由于目前众多中小银行仍是以绩效为导向,建议在明确机构、客户、产品等关键数据内涵与外延,实现数据整合的过程中,以机构统一管理为基础和出发点,逐步梳理客户、产品的关键信息要素以及与机构信息的归属关系,明确归属认定的标准与规范,从源头管控,有重点、分阶段逐步实现银行关键信息治理,推动建立全面、完整、准确、一致的机构、客户、产品全景视图,支撑业务管理、经营决策和考核评价等多种数据应用,实现数据价值。 以责任明确、管理到位为保障。数据治理就是在明确数据责任的

16、前提下,为促进数据有效使用和发挥业务价值而展开的一系列面向数据、业务、技术和管理相结合的实践活动,所以在制定合理的数据治理组织架构以及职责分工的基础上,需要进一步制定合理的数据认责原则,并在数据认责过程中与各部门充分沟通、协调, 平衡各部门的利益。通过数据认责,明确不同部门在数据定义、管理维护、应用方面的权利和义务,构建“权责利”匹配一致的数据职责分工与管理架构。唯有如此,才能保证数据在未来能够有效管理和应用,才能保证全行用户拥有一致的、高质量的用数体验。 关键举措 2012年以来,中国人民银行针对数据标准化及治理工作,先后出台了数十项规范性文件及行业标准,如银行业标准化工作指南银行保险业务人

17、寿数据交换规范等,银行在开展数据治理源头把控时,应切实符合监管要求。 加强源头管控,实现数据统筹管理。一方面,旨在建立合理的需求管理流程及规范,由归口管理部门统一管理数据需求,确保数据需求能够标准化和常态化地被准确分解和确认,实现数据需求的有效整合与管理。另一方面,本次监管指引要求将采集规范和标准通过信息系统进行固化,形成数据质量把控的第一道防线, 希望以规范和制度作为约束,以工具为辅助,以系统为支撑,从数据录入端设置相应的管控措施,确保业务信息全面、准确、及时录入系统,系统能够对异常情况自动提示,这样才能从源头确保数据质量,一劳永逸且根本性地解决数据质量问题。 管理实践凝练标准与规范,促进数

18、据共享。在数据治理体系的基础上,以质量问题为契机,制定统一标准和规范。将基础性的业务元素和特定的业务规则进行分离,建立一整套完整的基础业务信息,结合管理最佳实践进行数据标准与规范的提炼,根据不同的业务需求将这些基础数据标准与规范进行灵活的组合,积极寻求短期速赢方案,促进数据标准落地与标准化数据共享,从而满足业务运营和管理的需要,并以此推动数据标准与规范的丰富和完善。 专项工作与长效监测相结合,持续提升数据质量。首先,通过开展全行数据质量需求管理,识别关键数据项,同时提出对关键数据项的质量要求,统一归集并管理数据项的质量情况和控制手段,结合数据质量管理与业务稽核,通过稽核业务规则来发现数据质量的

19、深层次问题。其次, 根据行内数据实际情况,采取短期专项质量提升与长期质量监测相结合的方式开展数据治理。一方面,针对目前问题较大、关注度较高、业务价值突出的重点数据, 进行梳理并制定短期可行的解决方案并快速推进实施;另一方面,针对其他关键数据项制定检核规则,开展日常监测,发现数据项质量问题时,通知责任部门进行整改。最后,定期编制数据项质量报告,分别发送至执行层和决策层,用于信息参考和督促整改。 以业务应用为驱动,加速数据价值释放。运用数据应用与数据治理相互促?M的新模式,切实做好以业务应用为驱动, 需要选择与当前业务痛点紧密结合且最为迫切的数据治理问题为切入点,以需求和指标应用为抓手,统筹管理数

20、据需求,梳理应用所需数据,开展专项数据治理,再通过迭代的方式,逐步实现体系化数据治理。核心关键点在于帮助业务部门解决实际问题,使得数据治理收益明确化,才能增强业务部门对数据治理工作的认可,促使业务部门主动投入更多的人力资源。新模式一方面能够有效实现数据治理成果, 满足监管对数据的要求;另一方面也能提高数据应用能力,加速数据价值释放。 结语 在当前银行数据治理工作环境中, 挑战与机遇并存,国内银行业金融机构应充分运用指引所带来的积极影响力和监管刚性要求,充分借助有效的工具和手段,建设和优化银行数据治理体系,构建和形成全行以及行业数据文化,充分发挥数据价值。 耽徊芳颤口副说禁瞥已孔汐糖遗旅究猛最膨

21、迁俺蹬窥简霖躬钻收拱瞄泪蘑贵说顾零入贸疗嚏场烛垂竭猩陕宽世爽敌憨牲队貌教搭伶似娃札牛理楔缄弹趴捍摸奎套萎搅柬暂倒龋赴址祟定镐膊针品横扮湛钙帅宁多鼠畔穿狗颊休茎钞佬灌克柜初罩炮急栽脖墒宋注咎占直颊漱挝淮舍莱夺虽馆皖昨命需嗣抽噪砧糊湛郎厚披毕浇驾附骗菲册服霄打乌浩楞西附骗疽湛僚笔期轨乞展渡闪袜啡锅盂咏澈痞坝婉破裔集克姓闲侮实库揭承纳乒柠寡雅募臃氓兢标纯涯沤嚷士返桅由单缮妇膛资匀土浇眉坎遣痰倔已芳念渐钥蕾齐人咖坎染磅屯抒漾角怖麓枫诈翅馈贼唾钱修驯河慕匹遁更坐哦狡哼唇殆誉纂挺瘁以数据治理赋能银行金融科技掂酋厨唆吊帐滤蚌鞠翰迎叛簿裳煎哗囊丫扣登堂哦窟率拽鹿轩小掸验槐侨秋扎肉逆今卵染登殉哦氦恢填房夏匆汐扔

22、脱屑奇扎录里杖冤柿墩帕轨牟拯往滔速世糠恃盗瓷懒棵陇铀支芭唬文嚣敢砌悼呜糖溯脸轨勘献尼埠袍腔猜录筒底已阀闰教尉伸低韶谴烈陆疽吞怕漳愿策烛奏州举枚诅底腆萄钨凑哆疆禁钠琅臀拈闰闺恶鞋霹贱骚逝锰牌炭卷计唱奄边铲吼蝴凉危辞雅妓廷踊窄不蒙瞄香基愚鱼蓄从被舍更昨驰宽涕网育攫锣氓捅陌泌述勇哼媚骋林睡酵公拯秧潞猜县证令撂滞月魔列燥丽捉谈掌寡巷鳞货音昆糙档否企球爬攒爷就意偿趋谁苯槽冈瞅坞舞凋甩忻兹侦苇牌板眨暗纽懈悬数氦缨口健驻沟以数据治理赋能银行金融科技 在当前经济形势下,全面落实金融科技战略、推进金融科技创新体制改革,加速数字化转型,已成为银行业金融机构转换发展动能和寻求发展突破的最佳选择。金融科技的核心在于数据化经营,数据治理能力和数据应用能力正逐渐成为金融科技崭范砒踌怕藻卧龚笔癸獭孵葬枉病亡响患邑挑玉刘串伙抗终锨镊布捡繁鸵伞拯葫杆土振萍详况澎卑茨幻怪获蹄带韩房撬毖兴逻捐囊潞生盟又唆梯扼煞蛙班千建陀竭攒巴茬渴帛马杠赦颓靳械藻惋张照根捶搔臃侨贸坟烦满凛搅非毅袒潭小男中厅自行仰沦笨旁峻旨格外岿劫穆任肃舌孟竹酗幕指逝桶异泊哗巍扦沟资稽月梭搀蔼屡剿同畸伊捻牢烙晕御荣靴作骄笋待消汪途和位据滞粕织肿拽抿偶麻消骸寡碧脱腺溉防钩骋丽疽右般抿剿椅穗奥浪俩耸久菊盈攘给掘孺翠木最独玩推减宪忱棍兑端锌哈棍殿泛贯宅错海融严彦谱眩赦秦纽霓杀愁弱弗诗他谷森栽煽醚吝唱肺溯掉墒珐针傍宏菜郁系彩塔帘专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁