初二下期末几何压轴题试题(共9页).doc

上传人:飞****2 文档编号:13638371 上传时间:2022-04-30 格式:DOC 页数:9 大小:1.79MB
返回 下载 相关 举报
初二下期末几何压轴题试题(共9页).doc_第1页
第1页 / 共9页
初二下期末几何压轴题试题(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《初二下期末几何压轴题试题(共9页).doc》由会员分享,可在线阅读,更多相关《初二下期末几何压轴题试题(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上初二下期末几何压轴试题1、以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是_;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出EGD的度数图12、已知:如图,在ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF(1)求证:ABEFCE;(2)若AF=AD,求证:四边形A

2、BFC是矩形证明:(1)3、已知:ABC是一张等腰直角三角形纸板,B=90,AB=BC=1(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在ABC的边上小林设计出了一种剪法,如图1所示请你再设计出一种不同于图1的剪法,并在图2中画出来图4图3图2图1(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为,则=_;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的和记为,则=_;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4

3、个正方形的面积的和记为;按照同样的方法继续操作下去,第次裁剪得到_个新的正方形,它们的面积的和=_4、已知:如图,平面直角坐标系中,正方形ABCD的边长为4,它的顶点A在轴的正半轴上运动,顶点D在轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP(1)当OA=OD时,点D的坐标为_,POA=_;(2)当OAOD时,求证:OP平分DOA;(3)设点P到y轴的距离为,则在点A,D运动的过程中,的取值范围是_(3)答:在点A,D运动的过程中,的取值范围是_5、已知:如图,平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(4,0),(0,3

4、)将OCA沿直线CA翻折,得到DCA,且DA交CB于点E(1)求证:EC=EA;(2)求点E的坐标;(3)连接DB,请直接写出四边形DCAB的周长和面积6、已知:ABC的两条高BD,CE交于点F,点M,N分别是AF,BC的中点,连接ED,MN(1)在图1中证明MN垂直平分ED;(2)若EBD=DCE=45(如图2),判断以M,E,N,D为顶点的四边形的形状,并证明你的结论7、(6分)如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH。(1)求证:APBBPH;(2)求

5、证:APHCPH;(3)当AP1时,求PH的长。8、(6分)如图,在ABC中,ACAB,D点在AC上,ABCD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若EFC60,联结GD,判断AGD的形状并证明。10、阅读下列材料:小明遇到一个问题:AD是ABC的中线, 点M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分ABC的面积他的做法是:如图1,连结AM,过点D作DN/AM交AC于点N,作直线MN,直线MN即为所求直线D图1MBANC 请你参考小明的做法,解决下列问题:(1)如图2,在四边形ABCD中,AE平分ABCD的面积,M为CD边上一点,过M作一直线

6、MN,使其等分四边形ABCD的面积(要求:在图2中画出直线MN,并保留作图痕迹);图3图2(2)如图3,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图3中画出直线AE,并保留作图痕迹)11、 已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AFDE (1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O BD,AC分别与AE,BF交于点G,点H求证:OGOH;连接OP,若AP4,OP,求AB的长 ABCDOPEF图2GHABCDEFP图112、已知:如图,梯形ABCD中,ADBC,B=90,AD=,BC=,

7、DC=,且,点M是AB边的中点(1)求证:CMDM;(2)求点M到CD边的距离(用含,的式子表示) 13、已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2)点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线交折线OAB于点E(1)在点D运动的过程中,若ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形OABC,CB分别交CB,OA于点D,M,OA分别交CB,OA于点N,E探究四边形DMEN各边之间的数量关系,并对你的结论加以证明; (3)问题(2)

8、中的四边形DMEN中,ME的长为_图2图1 14、探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AEBC,BFAC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF若DE=DF,则的值为_ 拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且MAC=MBC,过点M分别作MEBC,MFAC,垂足分别为点E,F,连接DE,DF求证:DE=DF推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CBCA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论15、 已知:四边形ABCD是正方形,点E在CD边上,

9、点F在AD边上,且AFDE (1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O BD,AC分别与AE,BF交于点G,点H求证:OGOH;连接OP,若AP4,OP,求AB的长 ABCDOPEF图2GHABCDEFP图1 16、(本小题7分) 如图,四边形ABCD是正方形,点G是BC上任意一点,DEAG于点E,BFAG于点F。(1)求证:DEBFEF;(2)若点G为CB延长线上一点,其余条件不变请你在图中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明);(3)若AB=2a,点G为BC边中点时,试探究线段EF与GF之间的数量关

10、系,并通过计算来验证你的结论。17、如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BEAB),连接EG并延长交DC于点M,作MNAB,垂足为点N,MN交BD于点P,设正方形ABCD的边长为1。 (1)证明:四边形MPBG是平行四边形; (2)设BE=x,四边形MNBG的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围; (3)如果按题设作出的四边形BGMP是菱形,求BE的长。18、将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕, CBE为等腰三角形;再继续将纸片沿CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个

11、是拼合成的无缝隙、 无重叠的矩形),我们称这样两个矩形为“叠加矩形”请完成下列问题:(1)如图,正方形网格中的ABC能折叠成“叠加矩形”吗?如果能,请在图中画出折痕;(2)如图,在正方形网格中,以给定的BC为一边,画出一个斜ABC,使其顶点A格点上,且ABC折成的“叠加矩形”为正方形;(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 19、考考你的推理与论证(本题6分)如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于,且,连结(1)求证:是的中点;(2)如果,试判断四边形的形状,并证明你的结论20、拓广与探索(本题7分)如图(1),RtABC中,ACB=9

12、0,中线BE、CD相交于点O,点F、G分别是OB、OC的中点.(1)求证:四边形DFGE是平行四边形;(2)如果把RtABC变为任意ABC,如图(2),通过你的观察,第(1)问的结论是否仍然成立?(不用证明);(3)在图(2)中,试想:如果拖动点A,通过你的观察和探究,在什么条件下?四边形DFGE是矩形,并给出证明;(4)在第(3)问中,试想:如果拖动点A,是否存在四边形DFGE是正方形或菱形?如果存在,画出相应的图形(不用证明)(图1) (图2)21、如图,点A(0,4),点B(3,0),点P为线段AB上的一个动点,作轴于点M,作轴于点N,连接MN,当点P运动到什么位置时,MN的值最小?最小

13、值是多少?求出此时PN的长.22、如图,在梯形ABCD中,ADBC,AB=AD=DC=4, ,于点E,F是CD的中点,连接EF(1)求证:四边形AEFD是平行四边形;(2)点G是BC边上的一个动点,当点G在什么位置时,四边形DEGF是矩形?并求出这个矩形的周长;(3)在BC边上能否找到另外一点,使四边形DEF的周长与(2)中矩形DEGF的周长相等?请简述你的理由.23、 (9分)在梯形中,且,。对角线和相交于点,等腰直角三角板的直角顶点落在梯形的顶点上,使三角板绕点旋转。(1)如图9-1,当三角板旋转到点落在边上时,线段与的位置关系是 ,数量关系是 ;(2)继续旋转三角板,旋转角为,请你在图9

14、-2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由;(3)如图9-3,当三角板的一边与梯形对角线重合时,与相交于点P,若,求的长。 图9-1 图9-2 图9-324、 (9分)将一矩形纸片放在平面直角坐标系中,。动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动。当其中一点到达终点时,另一点也停止运动。设点的运动时间为(秒)。(1)用含的代数式表示;(2)当时,如图10-1,将沿翻折,点恰好落在边上的点处,求点的坐标;(3)连结,将沿翻折,得到,如图10-2。问:与能否平行?与能否垂直?若能,求出相应的值;若不能,

15、说明理由。25、锐角ABC中,AB=AC,点D在AC边上,DEAB于E,延长ED交BC的延长线于点F.(1) 当A=40时,求F的度数;(2) 设F为x度,FDC为y度,试确定y与x之间的函数关系式.26、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC(1)试猜想AE与GC有怎样的数量关系;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由;(3)在(2)的条件下,求证:AEGC(友情提示:旋转后的几何图形与原图形全等).27、如图所示,在直角梯形ABCD

16、中,AD/BC,A90,AB12,BC21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为t(秒)。(1)当为何值时,四边形的面积是梯形的面积的一半;(2)四边形能为平行四边形吗?如果能,求出的值;如果不能,请说明理由(3)四边形能为等腰梯形吗?如果能,求出的值;如果不能,请说明理由28、(12分)如图,等腰梯形ABCD中,ADBC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点(1)在不添加线段的前提下,图中有哪几对全等三

17、角形?请直接写出结论;(2)判断并证明四边形MENF是何种特殊的四边形?(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时?四边形MENF是正方形(直接写出结论,不需要证明)29、(12分)E是正方形ABCD的对角线BD上一点,EFBC,EGCD,垂足分别是F、G.求证:.ADCBEGF30、如图,在ABC中,BAC=90,AB=AC,点D是AB的中点,连接CD,过B作BECD交CD的延长线于点E,连接AE,过A作AFAE交CD于点F.(1)若AE=5,求EF; (2)求证:CD=2BE+DE. 31、如图,矩形ABCD中,AB=DC=6,AD=BC=,动点P从点A出发,以每秒1个单位长度的速度在射线AB上运动,设点P运动的时间是t秒,以AP为边作等边APQ(使APQ和矩形ABCD在射线AB的同侧).(1)当t为何值时,Q点在线段DC上?当t为何值时,C点在线段PQ上?(2)设AB的中点为N,PQ与线段BD相交于点M,是否存在BMN为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)设APQ与矩形ABCD重叠部分的面积为s,求s与t的函数关系式. 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁