2013年广东高考文科数学A卷试题及答案(绝对准的word)版(共8页).doc

上传人:飞****2 文档编号:13597711 上传时间:2022-04-30 格式:DOC 页数:8 大小:800.50KB
返回 下载 相关 举报
2013年广东高考文科数学A卷试题及答案(绝对准的word)版(共8页).doc_第1页
第1页 / 共8页
2013年广东高考文科数学A卷试题及答案(绝对准的word)版(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2013年广东高考文科数学A卷试题及答案(绝对准的word)版(共8页).doc》由会员分享,可在线阅读,更多相关《2013年广东高考文科数学A卷试题及答案(绝对准的word)版(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上绝密启用前试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项: 1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;

2、如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。参考公式:锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的1设集合,则 A B C D2函数的定义域是A B C D3若,则复数的模是 A2 B3 C4 D54已知,那么A B C D5执行如图1所示的程序框图,若输入的值为

3、3,则输出的值是 A1 B2 C4 D76某三棱锥的三视图如图2所示,则该三棱锥的体积是 A B C D7垂直于直线且与圆相切于第一象限的直线方程是 A B C D8设为直线,是两个不同的平面,下列命题中正确的是A若,则 B若,则C若,则 D若,则9已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是A B C D10设是已知的平面向量且,关于向量的分解,有如下四个命题:给定向量,总存在向量,使;给定向量和,总存在实数和,使;给定单位向量和正数,总存在单位向量和实数,使;给定正数和,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是A1B2C3D

4、4二、填空题:本大题共5小题考生作答4小题每小题5分,满分20分 (一)必做题(1113题)11设数列是首项为,公比为的等比数列,则 12若曲线在点处的切线平行于轴,则 13已知变量满足约束条件,则的最大值是(二)选做题(14、15题,考生只能从中选做一题)14(坐标系与参数方程选做题)已知曲线的极坐标方程为以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为 15(几何证明选讲选做题)如图3,在矩形ABCD中,垂足为,则 三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16(本小题满分12分)已知函数(1) 求的值;(2) 若,求17(本小题满分13分

5、)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)频数(个)5102015(1) 根据频数分布表计算苹果的重量在的频率;(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率18(本小题满分13分)如图4,在边长为1的等边三角形中,分别是边上的点,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中(1) 证明:/平面;(2) 证明:平面;(3) 当时,求三棱锥的体积19(本小题满分14分)设各项均为正数的数列的前项和为,满足且构成等比数列(1) 证明:;(2) 求数

6、列的通项公式;(3) 证明:对一切正整数,有20(本小题满分14分)已知抛物线的顶点为原点,其焦点到直线的距离为设为直线上的点,过点作抛物线的两条切线,其中为切点(1) 求抛物线的方程;(2) 当点为直线上的定点时,求直线的方程;(3) 当点在直线上移动时,求的最小值21(本小题满分14分)设函数 (1) 当时,求函数的单调区间;(2) 当时,求函数在上的最小值和最大值2013年广东高考文科数学A卷参考答案一、选择题题号12345678910选项ACDCCBABDB二、填空题11. 15 12. 13.5 14. (为参数) 15. 三、解答题16. 解:(1)(2),17. 解:1)苹果的重

7、量在的频率为;(2)重量在的有个;(3)设这4个苹果中分段的为1,分段的为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在和中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.18. 解:(1)在等边三角形中, ,在折叠后的三棱锥中也成立, ,平面,平面,平面;(2)在等边三角形中,是的中点,所以,. 在三棱锥中,;(3)由(1)可知,结合(2)可得.19. 解:(1)当时, (2)当时,,当时,是公差的等差数列.构成等比数列,解得,由(1)可知, 是首项,公差的等差数列. 数列的通项公式

8、为.(3)20. 解:(1)依题意,解得(负根舍去)抛物线的方程为;(2)设点,,由,即得. 抛物线在点处的切线的方程为,即. , .点在切线上, . 同理, . 综合、得,点的坐标都满足方程 . 经过两点的直线是唯一的,直线 的方程为,即;(3)由抛物线的定义可知,所以联立,消去得, 当时,取得最小值为 -kk k21. 解:(1)当时 ,在上单调递增.(2)当时,其开口向上,对称轴 ,且过 (i)当,即时,在上单调递增,从而当时, 取得最小值 ,当时, 取得最大值.(ii)当,即时,令解得:,注意到,(注:可用韦达定理判断,,从而;或者由对称结合图像判断) 的最小值,的最大值综上所述,当时,的最小值,最大值解法2(2)当时,对,都有,故故,而 ,所以 ,专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁