高中化学选修3期末复习刚要(共17页).doc

上传人:飞****2 文档编号:13594086 上传时间:2022-04-30 格式:DOC 页数:17 大小:336KB
返回 下载 相关 举报
高中化学选修3期末复习刚要(共17页).doc_第1页
第1页 / 共17页
高中化学选修3期末复习刚要(共17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《高中化学选修3期末复习刚要(共17页).doc》由会员分享,可在线阅读,更多相关《高中化学选修3期末复习刚要(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上高中化学选修3期末复习刚要1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质二、复习要点(一)原子结构1、能层和能级(1)能层和能级的划分 在同一个原子中,离核越近能层能量越低。 同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 任一能层,能级数等于能层序数。s、p、d、f可容纳的电子数依次是1、3、5、7的两倍。能层不同能级相同,所容纳的最多电子数相同。(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。2、构造原理(1)构

2、造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。(3)不同能层的能级有交错现象,如E(3d)E(4s)、E(4d)E(5s)、E(5d)E(6s)、E(6d)E(7s)、E(4f)E(5p)、E(4f)E(6s)等。原子轨道的能量关系是:ns(n-2)f (n-1)d np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒

3、数第三层不超过32个电子。(5)基态和激发态基态:最低能量状态。处于 最低能量状态 的原子称为 基态原子 。激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子 。 原子光谱:不同元素的原子发生电子跃迁时会吸收(基态激发态)和放出(激发态较低激发态或基态)不同的能量(主要是光能),产生不同的光谱原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核

4、外出现的概率密度分布,是核外电子运动状态的形象化描述。(2)原子轨道:不同能级上的电子出现 概率 约为90%的电子云空间轮廓图 称为原子轨道。s电子的原子轨道呈 球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,np能级各有3个原子轨道,相互垂直(用px、py、pz表示);nd能级各有5个原子轨道;nf能级各有7个原子轨道。4、核外电子排布规律(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。(2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。(3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方

5、向相同。(4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空 、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。电子数(5)(n-1)d能级上电子数等于10时,副族元素的族序数=ns能级电子数(二)元素周期表和元素周期律1、元素周期表的结构元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。(1)原子的电子层构型和周期的划分周期是指能

6、层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱, 非金属性逐渐增强。(2)原子的电子构型和族的划分族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。(3)原子的电子构型和元素的分区按电子排布可把周期表里的元素划分成 5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填

7、入电子的能级的符号。2、元素周期律元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。元素性质的周期性来源于原子外电子层构型的周期性。(1)同周期、同主族元素性质的递变规律同周期(左右)同主族(上下)原子结构核电荷数逐渐增大增大能层(电子层)数相同增多原子半径逐渐减小逐渐增大元素性质化合价最高正价由+1+7负价数=(8族序数)最高正价和负价数均相同,最高正价数=族序数元素的金属性和非金属性金属性逐渐减弱,非金属性逐渐增强金属性逐渐增强,非金属性逐渐减弱第一电离能呈增大趋势(注意

8、反常点:A族和A族、A族和A族)逐渐减小电负性逐渐增大逐渐减小(2)微粒半径的比较方法同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。如:NaMgAlSiPSCl同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。如:LiNaKRbCs,F-Cl-Br- Na+Mg2+Al3+(3)元素金属性强弱的判断方法金属性比较本质原子越易失电子,金属性越强。判断依据1. 在金属活动顺序表中越靠前,金属性越强2. 单质与水或非氧化性酸反应越剧烈,金属性越

9、强3. 单质还原性越强或离子氧化性越弱,金属性越强(电解中在阴极上得电子的先后)4. 最高价氧化物对应水化物的碱性越强,金属性越强5. 若xn+yx+ym+ 则y比x金属性强6. 原电池反应中负极的金属性强7. 与同种氧化剂反应,先反应的金属性强8. 失去相同数目的电子,吸收能量少的金属性强(4)非金属性强弱的判断方法非金属性比较本质原子越易得电子,非金属性越强判断方法1. 与H2化合越易,气态氢化物越稳定,非金属性越强2. 单质氧化性越强,阴离子还原性越弱,非金属性越强(电解中在阳极上得电子的先后)3. 最高价氧化物的水化物酸性越强,非金属性越强4. An-+BBm-+A 则B比A非金属性强

10、5. 与同种还原剂反应,先反应的非金属性强6. 得到相同数目的电子,放出能量多的非金属性强(三)共价键1、共价键的成键本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。2、共价键类型:(1)键和键键键成键方向沿键轴方向“头碰头”平行或“肩并肩”电子云形状轴对称镜像对称牢固程度强度大,不易断裂强度小,易断裂成键判断规律单键是键;双键有一个是键,另一个是键;三键中一个是键,另两个为键。(2)极性键和非极性键非 极 性 键极 性 键定义由同种元素的原子形成的共价键,共用电子对不发生偏移由不同种元素的原子形成的共价键,共用电子对

11、发生偏移原子吸引电子能力相同不同共用电子对位置不偏向任何一方偏向吸引电子能力强的原子一方成键原子的电性判断依据不显电性显电性举例单质分子(如H2、Cl2)和某些化合物(如Na2O2、H2O2)中含有非极性键气态氢化物,非金属氧化物、酸根和氢氧根中都含有极性键(3)配位键:一类特殊的共价键,一个原子提供空轨道,另一个原子提供一对电子所形成的共价键。配位化合物:金属离子与配位体之间通过配位键形成的化合物。如:Cu(H2O)4SO4、Cu(NH3)4(OH)2、Ag(NH3)2OH 、Fe(SCN) 3等。配位化合物的组成:3、共价键的三个键参数概念对分子的影响键长分子中两个成键原子核间距离(米)键

12、长越短,化学键越强,形成的分子越稳定键能对于气态双原子分子AB,拆开1molA-B键所需的能量键能越大,化学键越强,越牢固,形成的分子越稳定键角键与键之间的夹角键角决定分子空间构型(1)键长、键能决定共价键的强弱和分子的稳定性,键角决定分子空间构型和分子的极性。(2)键能与反应热:反应热生成物键能总和反应物键能总和(四)分子的空间构型1、等电子原理原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。(等

13、电子的推断常用转换法,如CO2=CO+O=N2+O= N2O= N2+ N= N3或SO2=O+O2=O3=N+O2= NO2)(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。2、价电子互斥理论:(1)价电子互斥理论的基本要点:ABn型分子(离子)中中心原子A周围的价电子对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。(2)ABn型分子价层电子对的计算方法:对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5中O、S作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;离子

14、的价电子对数计算 如:NH4+:;SO42- :3、杂化轨道理论(1)杂化轨道理论的基本要点:能量相近的原子轨道才能参与杂化。杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。杂化轨道能量相同,成分相同,如:每个sp3杂化轨道占有1个s轨道、3个p轨道。杂化轨道总数等于参与杂化的原子轨道数目之和。(2)s、p杂化轨道和简单分子几何构型的关系杂化类型spsp 2sp 3sp 3不等性杂化轨道夹角180 o120 o109o28中心原子位置A,BAAAAA中心原子孤对电子数000123分

15、子几何构型直线形平面三角形正四面体形三角锥形V字形直线形实例BeCl2、Hg Cl2BF3CH4、SiCl4NH3、PH3H2O、H2SHCl(3)杂化轨道的应用范围:杂化轨道只应用于形成键或者用来容纳未参加成键的孤对电子。(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有1个叁键,则其中有2个键,用去了2个p轨道,形成的是sp杂化;如果有1个双键则其中有1个键,形成的是sp 2杂化;如果全部是单键,则形成的是sp 3杂化。4、分子空间构型、中心原子杂化类型和分子极性的关系分子(离子)中心原子价电子对杂化类型VSEPR模型分子空间构型键角分子的极性CO22sp直线直线形1

16、80 o非SO23sp 2平面三角V字形极H2O、OF2、3sp 3平面三角V字形极HCN2sp直线直线形180 o极NH34sp 3正四面体三角锥形107 o18极BF3、SO33sp 2平面三角平面三角形120 o非H3O+4sp 3正四面体三角锥形107 o18CH4、CCl44sp 3正四面体正四面体形109o28非NH4+4sp 3正四面体正四面体形109o28非HCHO、COCl23sp 2平面三角平面三角形极(五)分子的性质1、分子间作用力(范德华力和氢键)(1)分子间作用力和化学键的比较化学键分子间作用力概念相邻原子间强烈的相互作用分子间微弱的相互作用范围分子内或某些晶体内分子

17、间能量键能一般为120800kJmol1约几到几十 kJmol1性质影响主要影响物质的化学性质(稳定性)主要影响物质的物理性质(熔沸点)(2)范德华力与氢键的比较范德华力氢键概念物质分子间存在的微弱相互作用分子间(内)电负性较大的成键原子通过H原子而形成的静电作用存在范围分子间分子中含有与H原子相结合的原子半径小、电负性大、有孤对电子的F、O、N原子强度比较比化学键弱得多比化学键弱得多,比范德华力稍强影响因素随分子极性和相对分子质量的增大而增大性质影响随范德华力的增大,物质的熔沸点升高、溶解度增大分子间氢键使物质熔沸点升高硬度增大、水中溶解度增大;分子内氢键使物质熔沸点降低、硬度减小2、极性分

18、子和非极性分子(1)极性分子和非极性分子非极性分子:从整个分子看,分子里电荷的分布是对称的。如:只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;极性键非极性键都有的:CH2=CH2、CHCH、。极性分子:整个分子电荷分布不对称。如:不同元素的双原子分子如:HCl,HF等。折线型分子,如H2O、H2S等。三角锥形分子如NH3等。(2)共价键的极性和分子极性的关系:两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子

19、的极性研究的是分子中电荷分布是否均匀。非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如HCl、H2S、H22等。(3)分子极性的判断方法单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等。以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极

20、性。若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。根据ABn的中心原子A的最外层价电子是否全部参与形成了同样的共价键。(或A是否达最高价)(4)相似相溶原理相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。3、有机物分子的手性和无机含氧酸的酸性(1)手性分子手性分子:具有完全相同的组成和原

21、子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。含有手性异构体的分子叫做手性分子。手性分子的判断方法:判断一种有机物是否具有手性异构体,可以看其含有的碳原子是否连有四个不同的原子或原子团,符合上述条件的碳原子叫做手性碳原子。手性碳原子必须是饱和碳原子,饱和碳原子所连有的原子和原子团必须不同。(2)无机含氧酸分子的酸性酸的元数=酸中羟基上的氢原子数,不一定等于酸中的氢原子数(有的酸中有些氢原子不是连在氧原子上)含氧酸可表示为:(HO)mROn,酸的强度与酸中的非羟基氧原子数n有关,n越大,酸性越强。n=0 弱酸 n=1 中强酸

22、n=2强酸 n=3 超强酸(六)晶体的结构和性质 类型比较离子晶体原子晶体分子晶体金属晶体构成晶体微粒阴、阳离子原子分子金属阳离子、自由电子形成晶体作用力离子键共价键范德华力微粒间的静电作用物理性质熔沸点较高很高低有高、有低硬度硬而脆大小有高、有低导电性不良(熔融或水溶液中导电)绝缘、半导体不良良导体传热性不良不良不良良延展性不良不良不良良溶解性易溶于极性溶剂,难溶于有机溶剂不溶于任何溶剂极性分子易溶于极性溶剂;非极性分子易溶于非极性溶剂中一般不溶于溶剂,钠等可与水、醇类、酸类反应典型实例NaOH、NaCl金刚石P4、干冰、硫钠、铝、铁1、四大晶体的比较 2、典型晶体的结构特征(1)NaCl

23、属于离子晶体。晶胞中每个Na+周围吸引着6个Cl,这些Cl构成的几何图形是正八面体,每个Cl周围吸引着6个Na+,Na+、Cl个数比为1:1,每个Na+与12个Na+等距离相邻,每个氯化钠晶胞含有4个Na+和4个Cl。(2)CsCl属于离子晶体。晶胞中每个Cl(或Cs+)周围与之最接近且距离相等的Cs+(或Cl)共有8个,这几个Cs+(或Cl)在空间构成的几何构型为立方体,在每个Cs+周围距离相等且最近的Cs+共有6个,这几个Cs+在空间构成的几何构型为正八面体,一个氯化铯晶胞含有1个Cs+和1个Cl 。(3)金刚石(空间网状结构)属于原子晶体。晶体中每个C原子和4个C原子形成4个共价键,成为

24、正四面体结构,C原子与碳碳键个数比为1:2,最小环由6个C原子组成,每个C原子被12个最小环所共用;每个最小环含有1/2个C原子。(4)SiO2属于原子晶体。晶体中每个Si原子周围吸引着4个O原子,每个O原子周围吸引着2个Si原子,Si、O原子个数比为1:2,Si原子与SiO键个数比为1:4,O原子与SiO键个数比为1:2,最小环由12个原子组成。(5)干冰属于分子晶体。晶胞中每个CO2分子周围最近且等距离的CO2有12个。1个晶胞中含有4个CO2。(6)石墨属于过渡性晶体。是分层的平面网状结构,层内C原子以共价键与周围的3个C原子结合,层间为范德华力。晶体中每个C原子被3个六边形共用,平均每

25、个环占有2个碳原子。晶体中碳原子数、碳环数和碳碳单键数之比为2:3。(7)金属晶体金属Po(钋)中金属原子堆积方式是简单立方堆积,原子的配位数为6,一个晶胞中含有1个原子。金属Na、K、Cr、Mo(钼)、W等中金属原子堆积方式是体心立方堆积,原子的配位数为8,一个晶胞中含有2个原子。金属Mg、Zn、Ti等中金属原子堆积方式是六方堆积,原子的配位数为12,一个晶胞中含有2个原子。金属Au、Ag、Cu、Al等中金属原子堆积方式是面心立方堆积,原子的配位数为12,一个晶胞中含有4个原子。3、物质熔沸点高低的判断(1)不同类晶体:一般情况下,原子晶体离子晶体分子晶体(2)同种类型晶体:构成晶体质点间的

26、作用力大,则熔沸点高,反之则小。离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中离子半径小(或阴、阳离子半径之和越小的),键能越强的,熔、沸点就越高。如NaCl、NaBr、Nal;NaCl、KCl、RbCl等的熔、沸点依次降低。离子所带电荷大的熔点较高。如:MgO熔点高于NaCl。分子晶体:在组成结构均相似的分子晶体中,式量大的,分子间作用力就大,熔点也高。如:F2、Cl2、Br2、I2和HCl、HBr、HI等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、

27、沸点逐渐降低。金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如A的Al,A的Mg,IA的Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。【模拟试题】选修3全册测试第卷(选择题 共72分)一、选择题(本题包括8小题,每小题4分,共32分。每小题只有一个选项符合题意。)1. 20世纪90年代初,国际上提出了“预防污染”这一概念,绿色化学是预防污染的重要手段之一,下列各项属于绿色化学的是( ) A. 治理污染B. 杜绝污染源C. 减少有毒物 D. 处理废弃物2. 关于键长、键能和键角,下列说法不正确的是( ) A. 键角是描述分子立体结构的重

28、要参数B. 键长的大小与成键原子的半径和成键数目有关C. 键能越大,键长越长,共价化合物越稳定D. 键角的大小与键长、键能的大小无关3. 构造原理揭示的电子排布能级顺序,实质是各能级能量高低,若以E表示某能级的能量,下列能量大小顺序中正确的是( ) A. E(3s)E(2s)E(1s) B. E(3s)E(3p)E(3d) C. E(4f)E(4s)E(3d) D. E(5s)E(4s)E(4f)4. 下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是( ) H2O NH3 F CN COA. B. C. D. 5. 超临界流体是物质介于气态和液态之间的一种新的状态。目前应用最广的是

29、超临界二氧化碳,在化学工业上可取代氟利昂等溶剂、发泡剂。下列有关超临界二氧化碳的说法中错误的是( )A. 超临界二氧化碳是新合成的一种物质B. 超临界二氧化碳由CO2分子构成C. 用超临界二氧化碳溶解物质后,可在常温常压下使二氧化碳挥发除去D. 用超临界二氧化碳代替氟利昂可减轻对臭氧层的破坏6. 纳米材料的表面微粒数占微粒总数的比例极大,这是它有许多特殊性质的原因,假设某氯化钠纳米颗粒的大小和形状恰好与氯化钠晶胞的大小和形状相同(如图所示),则这种纳米颗粒的表面微粒数占总微粒数的百分数为( ) A. 33.3% B. 50% C. 87.5% D. 96.3%7. 有下列离子晶体空间结构示意图

30、:为阳离子,为阴离子。以M代表阳离子,N代表阴离子,化学式为MN2的晶体结构为 A B C D8. 关于氢键,下列说法正确的是( ) A. 每一个水分子内含有两个氢键 B. 冰、水和水蒸气中都存在氢键C. DNA中的碱基互补配对是通过氢键来实现的D. H2O是一种非常稳定的化合物,这是由于氢键所致二、选择题(本题包括10小题,每小题4分,共40分。每小题有一个或两个选项符合题意。若正确答案只包括一个选项,多选时,该题为0分;若正确答案包括两个选项,只选一个且正确的给2分,选两个且都正确的给4分,但只要选错一个,该小题就为0分。)9. 2004年7月德俄两国化学家共同宣布,在高压下氮气会发生聚合

31、得到高聚氮, 这种高聚氮的NN键的键能为160kJ/mol(N2分子中的键能为942kJ/mol),晶体结构如图所示。下列有关高聚氮的说法不正确的是( )A. 高聚氮晶体属于分子晶体B. 高聚氮晶体中每个N原子和另外3个N原子相连C. 高聚氮可能成为炸药D. 高聚氮转变成氮气是氧化还原反应10、已知C3N4晶体很可能具有比金刚石更大的硬度,且原子间均以单键结合,下列关于晶体的说法正确的是( ) A. C3N4晶体是分子晶体B. C3N4晶体中,CN键的键长比金刚石中CC键的键长要短C. C3N4晶体中每个C原子连接4个N原子,而每个N原子连接3个C原子D. C3N4晶体中微粒间通过离子键结合1

32、1. 核磁共振(NMR)技术已广泛应用于复杂分子结构的测定和医学诊断等高科技领域。已知只有质子数或中子数为奇数的原子核有NMR现象。试判断下列哪种原子不能产生NMR现象( )A. C B. N C. O D. P12. 在40GPa高压下,用激光器加热到1 800 K时,人们成功制得了原子晶体干冰,下列推断正确的是( )A. 原子晶体干冰有很高的熔、沸点,有很大的硬度B. 原子晶体干冰易气化,可用作致冷剂C. 原子晶体干冰硬度大,可用于耐磨材料D. 每摩原子晶体干冰中含2mol CO键 13. 二氧化硅晶体是空间网状结构,如右图所示。关于二氧化硅晶体的下列说法中,不正确的是( ) A. 1 m

33、ol SiO2 晶体中SiO键为2molB. 晶体中Si、O原子个数比为1:2C. 晶体中Si、O原子最外层电子层都满足8电子结构D. 晶体中最小环上的原子数为814. 下列关于杂化轨道的叙述中,不正确的是( )A. 分子中中心原子通过sp3杂化轨道成键时,该分子不一定为正四面体结构B. 杂化轨道只用于形成键或用于容纳未参与成键的孤对电子C. Cu(NH3)42和CH4两个分子中中心原子Cu和C都是通过sp3杂化轨道成键D. 杂化轨道理论与VSEPR模型分析分子的空间构型结果常常相互矛盾15. 下列说法中正确的是( )A. 任何一个能层最多只有s、p、d、f四个能级B. 用n表示能层序数,则每

34、一能层最多容纳电子数为2n2C. 核外电子的运动的概率分布图(电子云)就是原子轨道D. 电子的运动状态可从能层、能级、轨道3个方面进行描述16. 已知在晶体中仍保持一定几何形状的最小单位称为晶胞。干冰晶胞是一个面心立方体,在该晶体中每个顶角各有1个二氧化碳分子,每个面心各有一个二氧化碳分子。实验测得25时干冰晶体的晶胞边长为acm,其摩尔质量为Mg/mol,则该干冰晶体的密度为(单位:g/cm3)()A. B. C. D. 17. 已知乙烯分子中碳原子以3个sp2杂化轨道与碳原子或氢原子形成键,两个碳原子上未参与杂化的p轨道形成键。下列关于乙烯分子的叙述中正确的是( )A. 乙烯分子2个碳原子

35、或4个氢原子不可能在同一个平面内 B. 乙烯分子中键角约为10928,所有原子在同一个平面内C. 乙烯分子中碳碳双键的键能比乙烷分子中碳碳单键的键能小D. 乙烯比乙烷活泼,说明碳碳之间的键比键键能小,易发生反应18. 下列物质性质的变化规律与分子间作用力有关的是( )A. HF、HCl、HBr、HI的热稳定性依次减弱B. 金刚石的硬度大于硅,其熔、沸点也高于硅C. NaF、NaCl、NaBr、NaI的熔点依次降低. F2、Cl2、Br2、I2的熔、沸点逐渐升高第卷(非选择题 共78分)三、(本题包括2小题,共22分)19. (12分)某离子晶体晶胞结构如下图所示,X位于立方体的顶点,Y位于立方

36、体中心。试分析:(1)晶体中每个Y同时吸引着_个X,每个X同时吸引着_个Y,该晶体的化学式为_。(2)晶体中,在每个X周围与它最接近且距离相等的X共有_个。(3)晶体中距离最近的2个X与1个Y形成的夹角XYX的度数为_。(4)设该晶体的摩尔质量为M gmol-1,晶体密度为cm-3,阿伏加德罗常数为NA,则晶体中两个距离最近的X中心间的距离为_ 。 20. (10分)下表列出了前20号元素中的某些元素性质的有关数据: 元素编号元素性质原子半径(1010m)1.522.270.741.430.771.100.991.860.750.71最高价态+11345715最低价态243131试回答下列问题

37、:(1)以上10种元素的原子中,失去核外第一个电子所需能量最少的是 (填写编号)。(2)上述、三种元素中的某两种元素形成的化合物中,每个原子都满足最外层为8电子稳定结构的物质可能是(写分子式) 。某元素R的原子半径为1.021010m,该元素在周期表中位于 ;若物质Na2R3是一种含有非极性共价键的离子化合物,请你写出该化合物的电子式 。(3)元素的某种单质具有平面层状结构,同一层中的原子构成许许多多的正六边形,此单质与熔融的单质相互作用,形成某种青铜色的物质(其中的元素用“”表示),原子分布如图所示,该物质的化学式为 。四. (本题包括2小题,共22分)21. (10分)下面是元素周期表的简

38、略框架图。请在上面元素周期表中画出金属元素与非金属元素的分界线。按电子排布,可把元素划分成5个区,不全是金属元素的区为_。根据氢元素最高正价与最低负价的绝对值相等,你认为可把氢元素放在周期表中的_族;有人建议将氢元素排在元素周期表的A族,请你写出支持这一观点的1个化学事实 。上表中元素、原子的最外层电子的电子排布式分别为 、 ;比较元素与元素的下列性质(填写“”或“”。原子半径:_、电负性:_、金属性:_。某短周期元素最高正价为+7,其原子结构示意图为_。22. (12分)下表是元素周期表中第一、第二周期10种元素的某些性质的一组数据(所列数据的单位相同),除带“”的四种元素外,其余元素都给出

39、了该种元素的全部该类数据。(H)13.6(He)24.654.4(Li)5.475.6122.5(Be)9.318.2153.9217.7(B)8.325.237.9259.4340.2(C)11.324.447.964.5392.1489.9(N)14.529.647.472.597.9552.1(O)13.635.1(F)17.434.9(Ne)21.641.6研究这些数据,回答下列问题:(1)每组数据可能是该元素的_(填序号)A. 原子得到电子所放出的能量 B. 原子半径的大小C. 原子逐个失去电子所吸收的能量 D. 原子及形成不同分子的半径的大小(2)分析同周期自左向右各元素原子的第一

40、个数据:总体变化趋势是_(填“增大”或“减小”);与前后元素相比,由于该元素的数值增大较多而变得反常的元素位于元素周期表的_族;根据你分析所得的变化规律推测,镁和铝的第一个数据的大小关系为Mg(1)_Al(1)(填“大于”或“小于”)。(3)分析每个元素的一组数据:有些元素的一组数据中个别地方增大的比例(倍数)特别大,形成“突跃”,由此可以证明原子结构中_的结论。根据这个规律,你认为氧元素8个数据中出现“突跃”的数据应该是第_个。五、(本题包括2小题,共20分)23. (12分)下图表示两种晶体的微观结构:试回答下列有关问题:高温下,超氧化钾晶体呈立方体结构。晶体中氧的化合价部分为0价,部分为

41、2价。图I为超氧化钾晶体的一个晶胞(晶体中最小的重复单元)。则晶体中,与每个K距离最近的K有 个,0价氧原子与2价氧原子的数目比为 。正硼酸(H3BO3)是一种片层状结构白色晶体,层内的H3BO3分子通过氢键相连(如图II)。下列有关说法正确的有 。正硼酸晶体属于原子晶体H3BO3分子的稳定性与氢键有关在H3BO3分子中各原子未能都满足8e稳定结构含1molH3BO3的晶体中有3mol氢键含1molH3BO3的晶体中有3mol极性共价键晶体中与每个“构成粒子”相邻的粒子呈平面正三角形空间构型24、(8分)随着科学技术的发展,阿伏加德罗常数的测定手段越来越多,测定的精度也越来越高。现有一种简单可行的测定方法,具体步骤为:将NaCl固体细粒干燥后,准确称取m g NaCl固体细粒并转移到定容仪器A中;用滴定管向A仪器中加苯,不断振荡,继续加苯到A仪器的刻度,计算出NaCl固体的体积V cm3。(1)步骤中仪器A最好使用 (填序号)A

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁