《人教版六年级数学(下册)知识要点(共17页).doc》由会员分享,可在线阅读,更多相关《人教版六年级数学(下册)知识要点(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上人教版六年级数学(下册)知识要点第一单元 负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出),光有学过的0 1 3.4 2/5是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。若一个数小于0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正
2、分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45,2/54、0既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:利用数轴:负数0正数或左边右边利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大1/31/6 -1/3-1/6第二单元 百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。几折就是十分之几,也就是百分之几十。例如:八折=8/10=80,六折五=6.5/10
3、=65/100=65解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。商品现在打八折:现在的售价是原价的80商品现在打六折五:现在的售价是原价的652、成数:几成就是十分之几,也就是百分之几十。例如:一成=1/10=10八成五=8.5/10=85/100=80解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10今年小麦的收成是去年的八成五:今年小麦的收成是去年的85(二)、税率和利率1、税率(1)
4、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法:应纳税额=总收入税率收入额=应纳税额税率2、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款
5、时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。(6)利息的计算公式:利息本金利率时间利率利息时间本金100(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)税后利息=本金利率时间(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元 圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。圆柱也可以由长方形卷曲而得到。两种方式:1
6、.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征:圆柱有无数条高4、圆柱的切割:横切:切面是圆,表面积增加2倍底面积,即S增=2r竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:沿着高展开,展开图形是长方形,如果h=2r,则展开图
7、形为正方形不沿着高展开,展开图形是平行四边形或不规则图形无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=r底面周长:C底=d=2r侧面积:S侧=2rh表面积:S表=2S底+S侧=2r+2rh体积 :V柱=rh考试常见题型:已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相
8、关计算公式进行计算无盖水桶的表面积=侧面积一个底面积油桶的表面积=侧面积两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征:圆锥有一条高。4、圆锥的切割:横切:切面是圆竖切(过顶点和直
9、径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh5、圆锥的相关计算公式:底面积:S底=r底面周长:C底=d=2r体积:V锥=1/3rh考试常见题型:已知圆锥的底面积和高,求体积,底面周长已知圆锥的底面周长和高,求圆锥的体积,底面积已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是
10、底面积而不是底面半径)是圆柱的3倍。4、圆柱与圆锥等底等高,体积相差2/3Sh题型总结直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化 分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)横截面的问题浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元
11、比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小
12、数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。5、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即
13、两个内项和两个外项)。(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成
14、正比例;如果积一定,就成反比例。11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。12、比例尺的分类(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺13、图上距离:图上距离/实际距离=比例尺实际距离比例尺=图上距离图上距离比例尺=实际距离14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系
15、式列出相应的方程并求解。17、常见的数量关系式:(成正比例或成反比例)单价数量=总价 单产量数量=总产量 速度时间=路程 工效工作时间=工作总量18、已知图上距离和实际距离可以求比例尺。已知比例尺和图上距离可以求实际距离。已知比例尺和实际距离可以求图上距离。计算时图距和实距单位必须统一。19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数天数=播种的总公顷数已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。第五单元 数学广角-鸽巢问题1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非
16、常重要的作用什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表放法盒子1盒子2130221312403无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下,得出的一个“必然结果”。类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式利用公式进行解题:物体个数鸽巣个数=商余数至少个数=商+12、摸2个同色球计算方法。要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。物体数颜色数(至少数1)1极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。公式:两种颜色:213(个)三种颜色:314(个)四种颜色:415(个)专心-专注-专业