数字图像处理期末复习提纲(第一章-第七章)(共15页).docx

上传人:飞****2 文档编号:13554837 上传时间:2022-04-30 格式:DOCX 页数:15 大小:91.07KB
返回 下载 相关 举报
数字图像处理期末复习提纲(第一章-第七章)(共15页).docx_第1页
第1页 / 共15页
数字图像处理期末复习提纲(第一章-第七章)(共15页).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《数字图像处理期末复习提纲(第一章-第七章)(共15页).docx》由会员分享,可在线阅读,更多相关《数字图像处理期末复习提纲(第一章-第七章)(共15页).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上考试题型:一、单选题(每题2分)例:计算机显示器主要采用哪一种彩色模型( )A、RGBB、CMY或CMYKC、HISD、HSV答案为A二、判断题(每题2分,正确的打“”,错误的打“”)例:在连通域中的点,按照其是否与背景相邻接,可以分为内部点和外部点。( )答案三、填空题(每空格2分)例:数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为 【 1 】 。答案:像素在本课程中,Matlab语句imwrite(A,tire.tif)的作用是 【 2 】 。答案:将图像矩阵A写入图像文件tire.tif四、计算题(根据题目难度和答题

2、时间不同,从5分至20分)例:(10分)设图像为:使用33的模板对其进行中值滤波处理,写出处理过程和结果。书上重难点:第一章 数字图像处理绪论*模拟图像空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像*数字图像空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。*数字图像处理(Digital Image Processing)利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理)*数字图像处理的优势(1)处理精度高,再现性好。(2)易于控制处理效

3、果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。*数字图像处理的目的(1)提高图像的视感质量, 以达到赏心悦目的目的a.去除图像中的噪声;b.改变图像的亮度、颜色;c.增强图像中的某些成份、 抑制某些成份;d.对图像进行几何变换等,达到艺术效果;(2)提取图像中所包含的某些特征或特殊信息。a.模式识别、计算机视觉的预处理(3)对图像数据进行变换、 编码和压缩, 以便于图像的存储和传输。*数字图像处理的主要研究内容(1) 图像的数字化a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理b.主要包括的是图像的采样与量化(2*) 图像的增强a.加强图像的有用信

4、息,消弱干扰和噪声(3)图像的恢复a.把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4*)图像的编码a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。(5)图像的重建a.由二维图像重建三维图像(如CT)(6)图像的分析a.对图像中的不同对象进行分割、分类、识别和描述、解释。(7)图像分割与特征提取a.图像分割是指将一幅图像的区域根据分析对象进行分割。b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。(8)图像隐藏a.是指媒体信息的相互隐藏。b.数字水印。c.图像的信息伪装。(9)图像通信*数字图像处理的应用领域:通信:图像传输,电视电话等。宇宙探测

5、:星体图片处理。遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的监测,气象云图。生物医学:CT,X射线成象,B超,红外图像,显微图像。工业生产: 产品质量检测,生产过程控制,CAD,CAM。军事: 军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等。公安: 现场照片,指纹,手迹,印章,人像等处理和鉴别。档案: 过期的文字、图片档案的修复和处理。机器人视觉娱乐: 电影特技,动画,广告,MTV等*数字图像处理的发展动向(1)提高精度,提高处理速度(2)加强软件研究,开发新方法(3)加强边缘学科的研究工作(4)加强理论研究(5)图像处理领域的标准化问题第二

6、、三章 图像处理基本知识、数字化与显示*电磁辐射波:(1)在实际的图像处理应用中,最主要的图像来源于电磁辐射成像。 (2)电磁辐射波包括无线电波(1m-100km)、微波(1mm-1m)、红外线(700nm-1mm)、可见光(400nm-700nm)、紫外线(10nm-400nm)、X射线(1nm-10nm)、射线(0.001nm-1nm)。 (3)电磁辐射波的波谱范围很广,波长最长的是无线电波为3102m,其波长是可见光波长的几十亿倍;波长最短的是射线,波长为310-17m,其波长比可见光小几百万倍。*太阳的电磁辐射波(1)太阳的电磁辐射波恰好主要占据整个可见光谱范围。 (2)可见光随波长的

7、不同依次呈现出紫、蓝、绿、黄、橙(橘红)、红六种颜色,白光是由不同颜色的可见光线混合而成的。(3)人从一个物体感受到的颜色是由物体反射的可见光的特性决定的,若一个物体反射的光在所有可见光波长范围内是平衡的,则对观察者来说显示的是白色;若一个物体只反射可见光谱中有限范围的光,则物体就呈现某种颜色。*简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。由于幅值f实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有: 0f(x,y)A0 图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。所以:f(x,y)可由两个分量来表征,一是照射到观察景物的光的总量,二是景物

8、反射或透射的光的总量. 设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有: f(x,y)=i(x,y)r(x,y) 其中: 0 i(x,y) A1 (2.4) 0 r(x,y) 1*数字图像的表示当一幅图像的x和y坐标及幅值f都为连续量时,称该图像为连续图像*。为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。(1)图像的采样: 对图像的连续空间坐标x和y的离散化。(2)图像灰度级的量化: 对图像函数的幅值 f 的离散化。*均匀采样:对一幅二维连续图像f(x,y)的连续空

9、间坐标x和y的均匀采样,实质上就是把二维图像平面在x方向和y方向分别进行等间距划分,从而把二维图像平面划分成MN个网格,并使各网格中心点的位置与用一对实整数表示的笛卡尔坐标(i,j)相对应。二维图像平面上所有网格中心点位置对应的有序实整数对的笛卡尔坐标的全体就构成了该幅图像的采样结果。*均匀量化: 对一幅二维连续图像f(x,y)的幅值f的均匀量化,实质上就是将图像的灰度取值范围0,255划分成L个等级(L为正整数,255=L-1),并将二维图像平面上MN个网格的中心点的灰度值分别量化成与L个等级中最接近的那个等级的值。*数字图像的表示: 为了描述上的方便,本书仍用f(x,y)表示数字图像。设x

10、0,M-1,y0,N-1,f0,L-1,则数字图像可表示成一个MN的二维数字阵列。每个(x,y)对应数字图像中的一个基本单元,称其为图像元素(picture element),简称为像素(pixel);且一般取M、N、图像灰度级L为2的整次幂,即: M=2m N=2n L=2k 这里,m、n和k为正整数。存储一幅MN的数字图像,需要的存储位数为: b = M N k 字节数为:B=b/8*灰度分辨率 灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率。 *灰度分辨率变化对图像视觉效果的影响: 随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增

11、加。图中由于伪轮廓信息的积累,图像已显现出了木刻画的效果。由此也说明:灰度分辨率越低,图像的视觉效果越差。*灰度直方图图像的灰度直方图,是一种表示数字图像中各级灰度值及其出现频数的关系的函数。 设一幅数字图像的灰度级范围为0,L-1,则该图像的灰度直方图可定义为: h(rk)=nk (r=0,1,2,L-1) (2.19)其中,rk表示第k级灰度值,h(rk)和nk表示图像中灰度值为rk的像素个数。*灰度直方图具有如下一些特征: (1)直方图仅能描述图像中每个灰度级具有的像素个数,不能表示图像中每个像素的位置(空间)信息; (2)任一特定的图像都有惟一的直方图,不同的图像可以具有相同的直方图;

12、 (3)如果一幅图像由两个不连接的区域组成,则整幅图像的直方图等于两个不连接的区域的直方图之和。*显示分辨率是指显示屏上能够显示的数字图像的最大像素行数和最大像素列数,取决于显示器上所能够显示的像素点之间的距离。*图像分辨率反映了数字化图像中可分辨的最小细节,也即图像的空间分辨率。在这里将图像分辨率看成是图像阵列的大小。同一显示器(或显示分辨率相同的不同显示器)显示的图像大小只与被显示的图像(阵列)的空间分辨率大小有关,与显示器的显示分辨率无关。换句话说,具有不同空间分辨率的数字图像在同一显示器上的显示分辨率相同。当同一幅图像(或图像分辨率相同的不同图像)显示在两个不同显示分辨率的显示器上时,

13、显示的图像的外观尺寸与显示器的显示分辨率有关:显示分辨率越高,显示出的图像的外观尺寸越小;显示分辨率越低,显示出的图像的外观尺寸越大。人眼的视觉过程是一个复杂的过程,可用亮度(灰度)、色调和饱和度这三个基本特征量来区分颜色。*亮度与物体的反射率成正比;*色调与混合光谱中主要光的波长相联系;*饱和度与色调的纯度有关。*常用的图像文件格式有:BMP、GIF、TIFF、PCX、JPEG等。*BMP文件(Bitmap File)是一种Windows采用的点阵式图像文件格式。*BMP图像文件的组成:(1)位图文件头(Bitmap File Header)标识名称:(BITMAPFILEHEADER):说

14、明文件的类型和位图数据的起始位置等,共14个字节。(2)位图信息头(Bitmap Information Header)(BITMAPINFORMATION):说明位图文件的大小、位图的高度和宽度、位图的颜色格式和压缩类型等信息。共40个字节。(3)位图调色板(Bitmap Palette)(RGBOUAD):由位图的颜色格式字段所确定的调色板数组,数组中的每个元素是一个RGBQUAD结构,占4个字节。(4)位图数据(Bitmap Data)(BYTE):位图数据,位图的压缩格式确定了该数据阵列是压缩数据或是非压缩数据。*图像的位图数据表示的图像共有biWidthbiHeight个像素。*图像

15、的位图数据是按行存储的,每一行的字节数按照4字节边界对齐,也即每一行的字节数是4的倍数,不足的字节用0补齐。*图像的位图数据是按行从下到上、从左到右排列的。也就是说,从图像的位图数据中最先读到的是图像最下面一行的最左边的像素,最后读到的是图像最上面一行的最右边的一个像素。第四章图像变换与二维数字滤波*图像变换是将图像从空域变换到其它域如频域的数学变换。*图像变换的目的:(1)使图像处理问题简化(2)有利于图像特征提取(3)有助于从概念上增强对图像信息的理解*傅立叶变换对(傅立叶变换和逆变换)一定存在的条件:当一个一维信号f(x)满足狄里赫利条件,即f(x):(1)具有有限个间断点;(2)具有有

16、限个极值点;(3)绝对可积; 则其傅立叶变换对(傅立叶变换和逆变换)一定存在。*傅立叶(Fourier)变换的好处:(1)可以得出信号在各个频率点上的强度。(2)可以将卷积运算化为乘积运算。*二维连续傅里叶变换*二维离散傅里叶变换*二维离散余弦变换(1)典型应用是对静止图像和运动图像进行性能优良的有损数据压缩。(2)在静止图像编码标准JPEG、运动图像编码标准MJPEG和MPEG等标准中都使用了88块的离散余弦变换,并将结果进行量化之后进行熵编码。(3)DCT具有很强的能量集中在频谱的低频部分的特性,而且当信号具有接近马尔可夫过程的统计特性时,DCT的去相关性接近于具有最优去相关性的K-L变换

17、的性能。*二维离散沃尔什-哈达玛变换(1)基底函数选用方波信号或者它的变形。(2)沃尔什函数是一组矩形波,其取值为1和-1,便于计算机运算。(3)函数有三种排列或编号方式:列率排列、佩利(Paley)排列和哈达玛(Hadamard)排列。(4)采用哈达玛排列的沃尔什函数进行的变换称为沃尔什-哈达玛变换,简称WHT或直称哈达玛变换。*二维哈达玛正、逆变换具有相同形式(1)正反变换都可通过两个一维变换实现。(2)高阶哈达玛矩阵可以通过如下方法求得:*卡胡南-列夫变换(K-L变换)是在均方意义下的最佳变换。*小波变换具有对时间(二维信号为空间)-频率的双重分析和多分辨率分析能力。*窗口傅里叶变换是一

18、种大小及形状均固定的时频化分析。*正交变换可以显著地减少图像数据的相关性,可以实现用较少的数据量表示原始图像及其特征。第五章 图像压缩编码*图像编码与压缩的内容(是什么)(1)图像压缩在信息论中称为信源编码(2)图像编码和压缩就是对图像数据按照一定的规则进行变换和组合,从而以尽可能少的代码表示尽可能多的信息。(3)研究内容包括数据压缩的数据的表示、传输、变换和编码方法,目的是减少存储数据所需的空间和传输所用的时间。*图像编码的基本原理(1)图像数据压缩是可能的(2)一般原始图像中存在很大的冗余度。(3)空间冗余、时间冗余、视觉冗余、信息熵冗余、结构冗余、知识冗余(4)用户对原始图像的信号不全都

19、感兴趣,可用特征提取和图像识别的方法,丢掉大量无用的信息。提取有用的信息,使必须传输和存储的图像数据大大减少。从信息论观点看,描述图像信源的数据由有用数据和冗余数据两部分组成。*冗余数据有:编码冗余、像素间冗余、心理视觉冗余3种。如果能减少或消除其中的1种或多种冗余,就能取得数据压缩的效果。因此图像信息的压缩是可能的。但到底能压缩多少,除了和图像本身存在的冗余度大小有关外,很大程度取决于对图像质量的要求。原始图像越有规则,各象素之间的相关性越强,它可能压缩的数据就越多。*图像编码压缩分类(1)根据解压重建后的图像和原始图像之间是否具有误差,图像编码压缩分为无误差(亦称无失真、无损、信息保持)编

20、码和有误差(有失真或有损)编码两大类。【无损编码分为:霍夫曼编码、行程编码、算术编码;有损编码分为:预测编码、变换编码、其它编码。】(2)根据编码作用域划分,图像编码为空间域编码和变换域编码两大类。*图像保真度描述解码图像相对原始图像偏离程度的测度一般称为保真度。*最常用的客观保真度准则:(1)原图像和解码图像之间的均方根误差(2)原图像和解码图像之间的均方根信噪比*常见图像压缩技术指标(公式和计算方法见课本) (1)图像熵与平均码长 (2)图像冗余度与编码效率 (3)编码压缩比 (4)SNR (5)主观评价*熵与相关性、冗余度的关系:根据Shannon无干扰信息保持编码定理,若对原始图像数据

21、的信息进行信源的无失真图像编码,压缩后平均码率存在一个下限为信源信息熵 H。理论上最佳信息保持编码的平均码长可以无限接近信源信息熵H。*霍夫曼编码:(1)这种编码方法根据源数据符号发生的概率进行编码。(2)在源数据中出现概率越大的符号,相应的码越短;出现概率越小的符号,其码长越长,从而达到用尽可能少的码符号表示源数据。它在变长编码方法中是最佳的。*霍(哈)夫曼Huffman编码方法(1)将信源符号按出现概率从大到小排成一列,然后把最末两个符号的概率相加,合成一个概率。(2)把这个符号的概率与其余符号的概率按从大到小排列,然后再把最末两个符号的概率加起来,合成一个概率。 (3)重复上述做法,直到

22、最后剩下两个概率为止。(4)从最后一步剩下的两个概率开始逐步向前进行编码。每步只需对两个分支各赋予一个二进制码,如对概率大的赋予码元0,对概率小的赋予码元1,如果相等,则从中任选一个赋0,另一个赋1。(5)读出时由符号开始一直走到最后的概率和1,将路线上所遇到的0和1反向排序好就是该符号的霍夫曼编码。*例:设一幅灰度级为8(分别用S0、S1、.S7表示)的图像中,各灰度级所对应的概率分别为0.40、0.18、0.10、0.10、0.07、0.06、0.05、0.04。现对其进行霍夫曼编码。得:S0=1,S1=001,S2=011,S3=0000,S4=0100,S5=0101,S6=00010

23、,S7=00011。*平均码长R为:R=所有(对应霍夫曼码位数*对应概率)的和=1*0.40+3*0.18+3*0.10+.+5*0.04=2.61*数字图像的熵为:H=负的所有(对应概率*log底为2的对应概率)的和=-(0.4*lb0.4+0.18*lb0.18+0.1*lb0.1+.0.04*lb0.04)=2.55*霍夫曼编码效率为: =熵除以平均码长*100%=(2.55/2.61)*100%=97.8%*算术编码(1)算术编码有两种模式:基于信源概率统计特性的固定编码模式和针对未知信源概率模型的自适应模式。(2)自适应模式中各个符号的概率初始值都相同, 它们依据出现的符号而相应地改

24、变。只要编码器和解码器都使用相同的初始值和相同的改变值的方法,那么它们的概率模型将保持一致。(3)有关实验数据表明,在未知信源概率分布的情况下, 算术编码一般要优于Huffman编码。在JPEG扩展系统中,就用算术编码取代了哈夫曼编码*算术编码公式:(1)StartN=StartB(即前一项的区间开始值)+LeftC(即该项的区间开始值)*L(即前一项的区间长度)(2)EndN=StartB(即前一项的区间开始值)+RightC(即该项的区间右端值)*L(即前一项的区间长度)(3)将最后的区间化为二进制,去0,把相同部分取出再在末尾加1,即为该数据序列的算术编码。(4)解码(例):字符串“da

25、cab”的编码是0.,对应的十进制数是0.8516。从编码过程来看,只有当第一个字母为“d”时,相应的区间0.8,1.0)才包含编码0.。接着,只有当第二个字母为a时,相应的区间0.8,0.88)才会包含编码0.;以此类推,编码器将唯一地解出字符串“dacab”*正交变换编码:通过正交变换把图像从空间域转换为能量比较集中的变换域系数,然后对变换系数进行编码,从而达到缩减比特率的目的。*典型的变换编码系统框图:(写在箭头上:输入图像)-构造子图像-正变换-量化-符号编码-(写在箭头上:压缩图像)-符号编码-反变换-合并子图像-解压图像*正交变换的性质(1)正交变换是熵保持的,说明正交变换前后不丢

26、失信息。(2)正交变换是能量保持的。(3)正交变换重新分配能量。如傅立叶变换,能量集中于低频区域。可用熵编码中不等长码来分配码长,能量大的系数分配较小的比特,达到压缩的目的。(4)去除相关性。把空间域中高度相关的像素灰度值变为相关很弱或不相关的频域系数,能去掉存在于相关性中的冗余度。*K-L正交变换:(1)运算量:求Cx及其特征值、特征矢量,矩阵运算要N2次实数加法和N2次实数乘法。(2)对视频图像实时处理极难做到。第六章 图像增强*图像增强的应用及其分类图像处理最基本的目的之一是改善图像,而改善图像最常用的技术就是图像增强*图像增强有两大类应用改善图像的视觉效果,提高图像清晰度突出图像的特征

27、,便于计算机处理。*图像增强按作用域分为两类,即空域处理和频域处理。*频域处理则是在图像的某个变换域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果。*频域处理与空域处理的异同:同:都是一种图像处理方法;异:空域处理是根据图像的空间函数对图像的不同空间特性进行处理,而频域处理是针对图像的频谱。*图像增强的点运算对一副输入图像,经点运算将产生一副输出图像,后者的每个像素的灰度值仅由输入像素的值决定。(1)对比度增强(2)对比度拉伸(3)灰度变换*灰度变换法*线性灰度变换(1)变换使得图像灰度范围增大,即对比度增大,图像会变得清晰;(2)变换使得图像灰度范围缩小,即对比度减小。 *非线

28、性灰度变换 (1)对数变换g = a + clg(f + 1) 对数变换可以增强低灰度级的像素,压制高灰度级的像素,使灰度分布与视觉特性相匹配。 *直方图(Equalization)表示数字图像中的每一灰度级与其出现的频率(该灰度级的象素数目)间的统计关系,用横坐标表示灰度级, 纵坐标表示频数(也可用概率表示)*灰度直方图图像的灰度直方图,是一种表示数字图像中各级灰度值及其出现频数的关系的函数。 *直方图均衡化是将原图像的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图像。*图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图

29、像看起来就更清晰了。*直方图均衡化实质上是减少图像的灰度级以换取对比度的加大。*在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强。*若这些灰度级所构成的图像细节比较重要,则需采用局部区域直方图均衡。*均衡化表格:(示例中从r0r7)k 0 1 2 3 4 5 6 7 rk 0 1/7 2/7 3/7 4/7 5/7 6/7 1 nk 790 1023 850 656 329 245 122 81 pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02 Sk0.19 0.44 0.65 0.81 0.89 0.95 0.

30、98 1 Sk1/7 3/7 5/7 6/7 6/7 1 1 1 Sk1/7 3/7 5/7 6/7 1 nsk790 1023 850 985 448 pr(sk) 0.19 0.25 0.21 0.24 0.11 (1)r小k,从r0开始,r0=0,r1=1/7;(2)n小k,题目给出;(3)p(r小k),题目给出;(4)s小(k计算),求出前一列累加;(5)s小(k舍入),计算前一列与(几/7)最接近,写出(几/7);(6)r(小k)箭头到s(小k),根据前一列出现的不同的分数,依次写出几个新灰度级(肯定比原来少)记为s(小k)的值,相同的合并单元格写到一个里面,并用箭头标出s(小k)的

31、值与第一列的对应关系(箭头从第一列的值(几/7,可能是多个)指向s(小k)的值(几/7);(7)p小s(s小k),参考前一列还剩的(“几”/7)决定哪“几”行有值(第一横条算0),有值的那几行根据“几”反看前一列,该值所在的第“几”行(第一横条算0)与上一列的“几”/7对应,再反看箭头左端对应的r小k的值,根据该值反看其对应的概率(即第3列),如果只有一个则直接赋值给最后一列,如果对应有多个则相加后赋值给对后一列。(8)作图:输入图像的直方图(横坐标:r小k;纵坐标:第3列;原点为00);输出图像的直方图(横坐标:s小k;纵坐标:最后一列;原点00)*均值滤波(邻域平均法):(1)优点:把每个

32、像素都用周围的8个像素做均值操作,平滑图像速度快、算法简单。(2)缺点:1、在降低噪声的同时,使图像产生模糊,特别是边缘和细节处,而且模糊尺寸越大,图像模糊程度越大。2、对椒盐噪声的平滑处理效果不理想。*中值滤波法用局部中值代替局部平均值 令f(x,y)-原始图像阵列, g(x,y)-中值滤波后图像阵列, f(x,y) -灰度级, g(x,y) -以f(x,y)为中心的窗口内各象素的灰度中间值。*中值滤波的特性(1)对离散阶跃信号、斜升信号不产生影响(2)连续个数小于窗口长度一半的离散脉冲将被平滑(3)三角函数的顶部平坦化(4)中值滤波后,信号频率谱基本不变(2)优点:1、在平滑脉冲噪声方面非

33、常灵敏,同时可以保护图像尖锐的边缘。2、不影响阶跃信号、斜坡信号,连续个数小于窗口长度一半的脉冲受到抑制,三角波信号顶部变平。(3)缺点:1、对于高斯噪声不如均值滤波。2、图像中点、线、尖角等细节较多,则不宜采用中值滤波。*图像的锐化*目的(1)图像平滑使图像变得模糊(2)图像识别中常常需要突出边缘和轮廓信息。*方法(1)平均、积分的逆运算,如微分、梯度(2)频谱的角度,高频分量被衰减,加强图像高频分量*常用的梯度算子(1)Roberts各向同性;对噪声敏感;模板尺寸为偶数,中心位置不明显。(2)Prewitt引入了平均因素,对噪声有抑制作用;操作简便。(3)Sobel引入了平均因素,增强了最

34、近像素的影响,噪声抑制效果比Prewitt好。(4)Krisch噪声抑制作用较好;需求出8个方向的响应(这里只给出2个模板)(5)Isotropic Sobel权值反比于邻点与中心店的距离,检测沿不用方向边缘时梯度幅度一致,即具有各向同性。*图像增强的内容:(1)消除噪声,改善图像的视觉效果(2)突出边缘,有利于识别和处理*频域平滑原理:噪声主要集中在高频部分,为除去噪声改善图像质量,采用低通滤波器抑制高频部分,然后再进行逆变换获得滤波图像,达到平滑图像的目的.采用低通滤波*同态滤波(1)灰度级动态范围很大,即黑的部分很黑,白的部分很白,而我们感兴趣的图中的某一部分灰度级范围又很小,分不清物体

35、的灰度层次和细节。(2)采用一般的灰度线形变换是不行的,因为扩展灰度级虽可以提高物理图像的反差,但会使动态范围更大。(3)而压缩灰度级,虽可以减少动态范围,但物理灰度层次和细节就会更看不清。*(4)同态滤波是一种在频域中将图像亮度范围进行压缩和将图像对比度进行增强的方法。*同态滤波目的:消除不均匀照度的影响而又不损失图像细节。第七章 图像复原*图像退化(为什么要恢复)(1)图像的退化是指图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像的质量变坏。(2)图像复原就是要尽可能恢复退化图像的本来面目,它是沿图像退化的逆过程进行处理。(3)图像退化的数学模型为:g(x,y)=

36、f(x,y)*h(x,y)+n(x,y)*典型的图像复原定义:是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像。*图像复原过程如下: 找退化原因建立退化模型反向推演恢复图像*图像增强与图像复原的联系与区别?(1)二者的目的都是为了改善图像的质量。(2)图像增强不考虑图像是如何退化的,而是试图采用各种技术来增强图像的视觉效果。因此,图像增强可以不顾增强后的图像是否失真,只要看得舒服就行。(3)而图像复原就完全不同,需知道图像退化的机制和过程等先验知识,据此找出一种相应的逆处理方法,从而得到复原的图像。(4)如果图像已退化,应先作复原处理

37、,再作增强处理。 *点源的概念一幅图像可以看成由无穷多极小的像素所组成,每一个像素都可以看作为一个点源成像,因此,一幅图像也可以看成由无穷多点源形成的。*白噪声:图像平面上不同点的噪声是不相关的,其谱密度为常数。(1)实用上,只要噪声带宽远大于图像带宽,就可把它当作白噪声。虽不精确,确是一个很方便的模型。(2)当噪声与图像不相关时,噪声是加性的。*采用线性位移不变系统模型的原由:(1)由于许多种退化都可以用线性位移不变模型来近似,这样线性系统中的许多数学工具如线性代数,能用于求解图像复原问题,从而使运算方法简捷和快速。(2)当退化不太严重时,一般用线性位移不变系统模型来复原图像,在很多应用中有

38、较好的复原结果,且计算大为简化。(3)尽管实际非线性和位移可变的情况能更加准确而普遍地反映图像复原问题的本质,但在数学上求解困难。只有在要求很精确的情况下才用位移可变的模型去求解,其求解也常以位移不变的解法为基础加以修改而成。*逆滤波复原过程:(1)对退化图像g(x,y)作二维离散傅立叶变换,得到G(u,v);(2)计算系统点扩散函数h(x,y)的二维傅立叶变换,得到H(u,v);(3)逆滤波计算F(u,v)=G(u,v)/H(u,v)(4)计算F(u,v)的逆傅立叶变换,求得f(x,y)*逆滤波的病态性:如果考虑噪声项N(x, y), 则出现零点时,噪声项将被放大,零点的影响将会更大,对复原

39、的结果起主导地位, 这就是逆滤波的病态性质*图像的几何校正(1)图像在获取过程中,由于成像系统本身具有非线性、拍摄角度等因素的影响,会使获得的图像产生几何失真。 (2)当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像*),以免影响定量分析的精度。(3)梯形失真;枕形失真;桶形失真*几何校正方法:图像几何校正的基本方法是先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。通常分两步:(1)图像空间坐标变换;首先建立图像像点坐标(行、列号)和物方(或参考图)对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;(2)确定各像素的灰度值(灰度内插)。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁