微积分下册期末试卷及答案(共42页).doc

上传人:飞****2 文档编号:13550246 上传时间:2022-04-30 格式:DOC 页数:42 大小:1.21MB
返回 下载 相关 举报
微积分下册期末试卷及答案(共42页).doc_第1页
第1页 / 共42页
微积分下册期末试卷及答案(共42页).doc_第2页
第2页 / 共42页
点击查看更多>>
资源描述

《微积分下册期末试卷及答案(共42页).doc》由会员分享,可在线阅读,更多相关《微积分下册期末试卷及答案(共42页).doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上中南民族大学06、07微积分(下)试卷及参考答案06年A卷评分阅卷人1、已知,则_.2、已知,则_.3、函数在点取得极值.4、已知,则_.5、以(为任意常数)为通解的微分方程是_. 二、选择题(每小题3分,共15分)评分阅卷人6 知与均收敛,则常数的取值范围是( ).(A) (B) (C) (D) 7 数在原点间断,是因为该函数( ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若,则下列关系式成立的是( ). (A) (B) (C) (D) 9、方程具有特解( ). (A) (B

2、) (C) (D) 10、设收敛,则( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)评分评分评阅人11、求由,所围图形绕轴旋转的旋转体的体积.评分评阅人12、求二重极限 . 评分评阅人13、由确定,求.评分评阅人14、用拉格朗日乘数法求在条件下的极值.评分评阅人15、计算.评分评阅人16、计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域.评分评阅人17、解微分方程.评分评阅人18、判别级数的敛散性.评分评阅人19、将函数展开成的幂级数,并求展开式成立的区间.评分评阅人20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计

3、资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式:,求最优广告策略.四、证明题(每小题5分,共10分)评分评分评阅人21、设,证明:.评分评阅人22、若与都收敛,则收敛.答案一、填空题(每小题3分,共15分)1、. 2、. 3、. 4、1. 5、.二、选择题(每小题3分,共15分)6、(C ). 7、 (B). 8、(A ) . 9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由,所围图形绕轴旋转的旋转体的体积.解:的反函数为。且时,。于是 12、求二重极限 . 解:原式 (3分) (6分)13、由确定,求.解:设,则 , ,

4、 , (3分) (6分)14、用拉格朗日乘数法求在条件下的极值.解: 令,得,为极小值点. (3分)故在下的极小值点为,极小值为 (6分)15、计算.解: (6分)16、计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域.解: (6分)17、解微分方程.解:令,方程化为,于是 (3分) (6分)18、判别级数的敛散性.解: (3分) 因为 (6分)19、将函数展开成的幂级数,并求展开式成立的区间.解:由于,已知 , (3分)那么 ,. (6分)20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如

5、下的经验公式:,求最优广告策略.解:公司利润为令即得驻点,而 (3分),所以最优广告策略为:电台广告费用(万元),报纸广告费用(万元). (6分)四、证明题(每小题5分,共10分)21、设,证明:.证: (3分) (6分)22、若与都收敛,则收敛.证:由于, (3分)并由题设知与都收敛,则收敛,从而收敛。 (6分)06年B卷一、填空题(每小题3分,共15分)评分阅卷人1、设,则_.2、已知,则_.3、设函数在点取得极值,则常数. 4、已知,则_.5、以(为任意常数)为通解的微分方程是_. 二、选择题(每小题3分,共15分)评分阅卷人6、已知与均收敛,则常数的取值范围是( ).(A) (B) (

6、C) (D) 7、对于函数,点( ).(A) 不是驻点 (B) 是驻点而非极值点 (C) 是极大值点 (D) 是极小值点8、已知,其中为,则( ).(A) (B) (C) (D) 9、方程具有特解( ). (A) (B) (C) (D) 10、级数收敛,则级数( ).(A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性不定三、计算题(每小题6分,共60分)评分评分评阅人11、求,所围图形绕轴旋转的旋转体的体积.评分评阅人12、求二重极限. 评分评阅人13、设,求.评分评阅人14、用拉格朗日乘数法求在满足条件下的极值.评分评阅人15、计算.评分评阅人16、计算二重积分,其中是由轴及圆

7、周所围成的在第一象限内的区域.评分评阅人17、解微分方程.评分评阅人18、判别级数的敛散性.评分评阅人19、将函数展开成的幂级数.评分评阅人20、某工厂生产甲、乙两种产品,单位售价分别为40元和60元,若生产单位甲产品,生产单位乙产品的总费用为,试求出甲、乙两种产品各生产多少时该工厂取得最大利润.四、证明题(每小题5分,共10分)评分评分评阅人21、设,证明.评分评阅人22、若与都收敛,则收敛.07年A卷一、填空题(每小题3分,共15分)评分阅卷人1、设,且当时,则 .2、计算广义积分= .3、设,则 . 4、微分方程具有 形式的特解.5、设,则_ 二、选择题(每小题3分,共15分)评分阅卷人

8、6、的值为( ).(A) (B) (C) (D)不存在7、和存在是函数在点可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件(C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面和及柱面所围的体积是( ).(A) (B) (C) (D) 9、设二阶常系数非齐次线性方程有三个特解,则其通解为( ). (A) (B) (C) (D) 10、无穷级数 (为任意实数) ( ).(A) 收敛 (B) 绝对收敛 (C) 发散 (D) 无法判断三、计算题(每小题6分,共60分)评分评分评阅人11、求极限.评分评阅人12、求由与直线、所围图形绕轴旋转的旋转体的体积. 评分评阅人13、

9、求由所确定的隐函数的偏导数.评分评阅人14、求函数的极值.评分评阅人15、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广告策略.评分评阅人16、计算积分,其中是由直线及所围成的闭区域.评分评阅人17、已知连续函数满足,且,求.评分评阅人18、求解微分方程=0.评分评阅人19、求级数的收敛区间.评分评阅人20、判定级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分)评分评分评阅人21、设正项级数收敛,证明级

10、数也收敛.评分评阅人22、设,其中为可导函数, 证明.07(A)卷参考答案(可能会有错误大家一定要自己核对)一、填空题(每小题3分,共15分)1、设,且当时,则 。()2、计算广义积分= 。()3、设,则 。()4、微分方程具有 形式的特解.()5、设,则_。(1)二、选择题(每小题3分,共15分)1、的值为 ( A )A.3 B.0 C.2 D.不存在2、和存在是函数在点可微的 ( A )。 A.必要非充分的条件; B.充分非必要的条件; C.充分且必要的条件; D.即非充分又非必要的条件。3、由曲面和及柱面所围的体积是 (D)。A. ; B. ;C、; D. 4、设二阶常系数非齐次线性方程

11、有三个特解,则其通解为 (C )。 A.; B.; C.; D.5、无穷级数(为任意实数) (D)A、收敛 B、绝对收敛 C、发散 D、无法判断 三、计算题(每小题6分,共60分)1、求下列极限:。解: (3分) (6分)2、求由与直线、所围图形绕轴旋转的旋转体的体积。解: (4分) (6分)3、求由所确定的隐函数的偏导数。解:方程两边对求导得:,有 (3分)方程两边对求导得:,有 (6分)4、求函数的极值。解:,则, 求驻点,解方程组得和. (2分)对有,于是,所以是函数的极大值点,且 (4分)对有,于是, 不是函数的极值点。 (6分)5、某公司可通过电台及报纸两种方式做销售某商品的广告.根

12、据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广告策略.解:显然本题要求:在条件下,求的最大值.令, (3分)解方程组 (5分)得:, 所以,若提供的广告费用为万元,应将万元全部用在报纸广告费用是最优的广告策略. (6分)6、计算积分,其中是由直线及所围成的闭区域;解:. (4分) (6分)7、已知连续函数满足,且,求。解:关系式两端关于求导得:即 (2分)这是关于的一阶线性微分方程,其通解为: = (5分)又,即,故,所以 (6分)8、求解微分方程=0 。解:令,则,于是原方程可化为: (3分)

13、即,其通解为 (5分) 即故原方程通解为: (6分)9、求级数的收敛区间。解:令,幂级数变形为,. (3分)当时,级数为收敛;当时,级数为发散. 故的收敛区间是, (5分)那么的收敛区间为. (6分)10、 判定级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛。解:因为 (2分)由比值判别法知收敛(), (4分)从而由比较判别法知收敛,所以级数绝对收敛. (6分)四、证明题(每小题5分,共10分)1、设正项级数收敛,证明级数也收敛。证:, (3分)而由已知收敛,故由比较原则,也收敛。 (5分)2、设,其中为可导函数, 证明.证明:因为, (2分) (4分)所以. (5分)一、填空题(

14、每小题3分,共15分)评分阅卷人1、设,且当时,则 .2、计算广义积分 .3、设,则 .4、微分方程具有 形式的特解.5、级数的和为 . 二、选择题(每小题3分,共15分)评分阅卷人6、的值为( ).(A) (B) (C) (D)不存在7、和在存在且连续是函数在点可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件(C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面和及柱面所围的体积是( ).(A) (B) (C) (D) 9、设二阶常系数非齐次微分方程有三个特解,则其通解为( ). (A) (B) (C) (D) 10、无穷级数(为任意实数) ( ).(A) 无法判

15、断 (B) 绝对收敛 (C) 收敛 (D) 发散三、计算题(每小题6分,共60分)评分评分评阅人11、求极限.评分评阅人12、求由在区间上,曲线与直线、所围图形绕轴旋转的旋转体的体积. 评分评阅人13、求由所确定的隐函数的偏导数.评分评阅人14、求函数的极值.评分评阅人15、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广告策略.评分评阅人16、计算二重积分,其中是由,及所围成的闭区域.评分评阅人17、已知连续函数满足,求.评分评阅人18、求微分方

16、程的通解.评分评阅人19、求级数的收敛区间.评分评阅人20、判定级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分)评分评分评阅人21、设级数收敛,证明也收敛.评分评阅人22、设,证明:.07年(B)卷参考答案(可能会有错误大家一定要自己核对)一、填空题(每小题3分,共15分)1、设,且当时,则 。()2、计算广义积分= 。()3、设,则 。()4、微分方程具有 形式的特解.()5、级数的和为 。()二、选择题(每小题3分,共15分)1、的值为 ( B )A、0 B、3 C、2 D、不存在2、和在存在且连续是函数在点可微的 ( B ) A.必要非充分的

17、条件; B.充分非必要的条件; C.充分且必要的条件; D.即非充分又非必要的条件。3、由曲面和及柱面所围的体积是 ( B)A. ; B. ;C、; D. 4、设二阶常系数非齐次微分方程有三个特解,则其通解为 (D) A、; B、; C、 ; D、5、无穷级数(为任意实数) (A)A、无法判断 B、绝对收敛 C、收敛 D、发散三、计算题(每小题6分,共60分)1、求下列极限:。解: (3分) (6分) 2、求由在区间上,曲线与直线、所围图形绕轴旋转的旋转体的体积。 解: (4分) (6分)3、求由所确定的隐函数的偏导数。解:(一)令则 , , 利用公式,得 (3分) (6分)(二)在方程两边同

18、时对x求导,得 解出 , (3分)同理解出 (6分)4、求函数的极值。解:,则,求驻点,解方程组得和. (2分)对有,于是,所以点不是函数的极值点. (4分)对有,于是,且,所以函数在点取得极小值, (6分)5、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广告策略.解:显然本题要求:在条件下,求的最大值.令, (3分)解方程组 (5分)得:, 所以,若提供的广告费用为万元,应将万元全部用在报纸广告费用是最优的广告策略. (6分)6、计算二重积分,

19、其中是由及所围成的闭区域;解: (4分) (6分)7、已知连续函数满足,求。解:关系式两端关于求导得:即 (2分)这是关于的一阶线性微分方程,其通解为: (5分)又,即,故,所以 (6分)8、求微分方程的通解。解 这是一个不明显含有未知函数的方程作变换 令 ,则,于是原方程降阶为 (3分), 分离变量,积分得 即 ,从而 (5分)再积分一次得原方程的通解 y (6分)9、求级数的收敛区间。解:令,幂级数变形为,. (3分)当时,级数为收敛;当时,级数为发散. 故的收敛区间是, (5分)那么的收敛区间为. (6分)10、 判定级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:。解:因为 (2分)由比值判别法知收敛(), (4分)从而由比较判别法知收敛,所以级数绝对收敛. (6分)四、证明题(每小题5分,共10分)1、设级数收敛,证明也收敛。证:由于, (3分)而,都收敛,故收敛,由比较原则知 收敛.。(5分)2、设,证明:。证明: 因为 , (2分), , (4分)所以 (5分)专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁