《物理化学简明版天津大学物理化学教研室编答案(共15页).doc》由会员分享,可在线阅读,更多相关《物理化学简明版天津大学物理化学教研室编答案(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一章 气体pVT性质1-1物质的体膨胀系数与等温压缩系数的定义如下:试导出理想气体的、与压力、温度的关系?解:对于理想气体,pV=nRT1-2 0、101.325kPa的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。解:1-3 一抽成真空的球形容器,质量为25.0000g。充以4水之后,总质量为125.0000g。若改用充以25、13.33kPa的某碳氢化合物气体,则总质量为25.0163g。试估算该气体的摩尔质量。解:先求容器的容积n=m/M=pV/RT1-4 两个体积均为V的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到10
2、0,另一个球则维持0,忽略连接管中气体体积,试求该容器内空气的压力。解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 终态(f)时 1-5 0时氯甲烷(CH3Cl)气体的密度随压力的变化如下。试作/pp图,用外推法求氯甲烷的相对分子质量。P/kPa101.32567.55050.66333.77525.331/(gdm-3)2.30741.52631.14010.757130.56660解:将数据处理如下:P/kPa101.32567.55050.66333.77525.331(/p)/(gdm-3kPa)0.022770.022600.022500.
3、022420.02237作(/p)对p图当p0时,(/p)=0.02225,则氯甲烷的相对分子质量为 1-6今有20的乙烷-丁烷混合气体,充入一抽真空的200 cm3容器中,直至压力达101.325kPa,测得容器中混合气体的质量为0.3879g。试求该混合气体中两种组分的摩尔分数及分压力。解:设A为乙烷,B为丁烷。 (1) (2)联立方程(1)与(2)求解得1-7如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。H2 3dm3p TN2 1dm3p T(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。(2)隔板抽去前后,H
4、2及N2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p,温度均为T。 (1)得:而抽去隔板后,体积为4dm3,温度为,所以压力为 (2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p。(2)抽隔板前,H2的摩尔体积为,N2的摩尔体积抽去隔板后所以有 ,可见,隔板抽去前后,H2及N2的摩尔体积相同。(3)所以有 1-8 氯乙烯、氯化氢及乙烯构成的混合气体中,各组分的摩尔分数分别为0.89、0.09和0.02。于恒定压力101.325kPa条件下,用水吸收掉其中的氯化氢,所得混合气体中增加了分压力为2
5、.670 kPa的水蒸气。试求洗涤后的混合气体中C2H3Cl及C2H4的分压力。解:洗涤后的总压为101.325kPa,所以有 (1) (2)联立式(1)与式(2)求解得1-9室温下一高压釜内有常压的空气。为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下向釜内通氮直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。这种步骤共重复三次。求釜内最后排气至年恢复常压时其中气体含氧的摩尔分数。设空气中氧、氮摩尔分数之比为14。解: 高压釜内有常压的空气的压力为p常,氧的分压为 每次通氮直到4倍于空气的压力,即总压为 p=4p常,第一次置换后釜内氧气的摩尔分数及分压为第二次置换后釜内氧气
6、的摩尔分数及分压为所以第三次置换后釜内氧气的摩尔分数1-10 25时饱和了水蒸汽的乙炔气体(即该混合气体中水蒸汽分压力为同温度下水的饱和蒸气压)总压力为138.7kPa,于恒定总压下泠却到10,使部分水蒸气凝结成水。试求每摩尔干乙炔气在该泠却过程中凝结出水的物质的量。已知25及10时水的饱和蒸气压分别为3.17kPa和1.23kPa。解:,故有所以,每摩尔干乙炔气含有水蒸气的物质的量为进口处:出口处:每摩尔干乙炔气在该泠却过程中凝结出的水的物质的量为 0.02339-0.=0.01444(mol)1-11 有某温度下的2dm3湿空气,其压力为101.325kPa,相对湿度为60。设空气中O2和
7、N2的体积分数分别为0.21和0.79,求水蒸气、O2和N2的分体积。已知该温度下水的饱和蒸气压为20.55kPa(相对湿度即该温度下水蒸气分压与水的饱和蒸气压之比)。解:水蒸气分压水的饱和蒸气压0.6020.55kPa0.6012.33 kPaO2分压(101.325-12.33 )0.2118.69kPaN2分压(101.325-12.33 )0.7970.31kPa 1-12 一密闭刚性容器中充满了空气,并有少量的水,当容器于300K条件下达到平衡时,器内压力为101.325kPa。若把该容器移至373.15K的沸水中,试求容器中达到新的平衡时应有的压力。设容器中始终有水存在,且可忽略水
8、的体积变化。300K时水的饱和蒸气压为3.567kPa。解:300K时容器中空气的分压为 373.15K时容器中空气的分压为 373.15K时容器中水的分压为 101.325kPa所以373.15K时容器内的总压为p=+121.534+101.325=222.859(kPa)1-13 CO2气体在40时的摩尔体积为0.381dm3mol-1。设CO2为范德华气体,试求其压力,并与实验值5066.3kPa作比较。解:查表附录七得CO2气体的范德华常数为a=0.3640Pam6mol-2;b=0.426710-4m3mol-1相对误差E=5187.7-5066.3/5066.3=2.4%1-14今
9、有0、40530kPa的氮气体,分别用理想气体状态方程及范德华方程计算其摩尔体积。其实验值为70.3cm3mol-1。解:用理想气体状态方程计算如下:将范德华方程整理成 (a)查附录七,得a=1.40810-1Pam6mol-2,b=0.391310-4m3mol-1这些数据代入式(a),可整理得解此三次方程得 Vm=73.1 cm3mol-1*1-15试由波义尔温度TB的定义式,试证范德华气体的TB可表示为TB=a/(bR)式中a、b为范德华常数。解:先将范德华方程整理成将上式两边同乘以V得 求导数当p0时,于是有 当p0时V,(V-nb)2V2,所以有 TB= a/(bR)1-16 把25
10、的氧气充入40dm3的氧气钢瓶中,压力达202.7102kPa。试用普遍化压缩因子图求解钢瓶中氧气的质量。解:氧气的临界参数为 TC=154.58K pC=5043kPa氧气的相对温度和相对压力由压缩因子图查出:Z=0.95钢瓶中氧气的质量 第二章 热力学第一定律2-1 1mol水蒸气(H2O,g)在100,101.325 kPa下全部凝结成液态水。求过程的功。解: 2-2始态为25,200kPa的5 mol 某理想气体,经a,b两不同途径到达相同的末态。途径a先经绝热膨胀到 28.57,100kPa,步骤的功Wa= - 5.57kJ;在恒容加热到压力200 kPa的末态,步骤的热Qa= 25
11、.42kJ。途径b为恒压加热过程。求途径b的Wb及Qb。解:过程为: 途径b因两条途径的始末态相同,故有Ua=Ub,则 2-3 某理想气体。今有该气体5 mol 在恒容下温度升高50,求过程的W,Q,H 和U。解:恒容:W=0;根据热力学第一定律,:W=0,故有Q=U=3.118kJ2-4 2mol 某理想气体,。由始态100 kPa,50 dm3,先恒容加热使压力升高至200 kPa,再恒压泠却使体积缩小至25 dm3。求整个过程的W,Q,H 和U。解:整个过程示意如下: 2-5要求出V2利用V2求出P外,接着求V1 因为是恒温不可逆即恒温恒外压 再用P外*(v1-v2) 就等于*(0.02
12、46-0.0123)=2497JQ=U-W=(1464-2497)=-1033J 关键是要列出始中末态2-6 已知CO2(g)的Cp,m =26.75+42.25810-3(T/K)-14.2510-6(T/K)2 Jmol-1K-1求:(1)300K至800K间CO2(g)的;(2)1kg常压下的CO2(g)从300K恒压加热至800K的Q。解: (1):(2):H=nHm=(1103)44.0122.7 kJ =516 kJ 2-7 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0,4 mol 的Ar(g)及150,2mol 的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末
13、态温度t及过程的H。 已知:Ar(g)和Cu(s)的摩尔定压热容Cp,m分别为20.786及24.435,且假设均不随温度而变。解:用符号A代表Ar(g),B代表Cu(s);因Cu是固体物质,Cp,mCv,m;而Ar(g):过程恒容、绝热,W=0,QV=U=0。显然有得 所以,t=347.38-273.15=74.23 2-8 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数yB=0.4,始态温度T1=400 K,压力p1=200 kPa。今该混合气体绝热反抗恒外压p=100 kPa膨胀到平衡态。求末态温度T2及过程的W,U,H。解:先求双原子理想气体B的物质的量:n(B)=yB
14、n=0.45 mol=2mol;则单原子理想气体A的物质的量:n(A)=(5-2)mol =3mol单原子理想气体A的,双原子理想气体B的过程绝热,Q=0,则 U=W于是有 14.5T2=12T1=12400K得 T2=331.03K 2-9 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0的单原子理想气体A及5mol ,100的双原子理想气体B,两气体的压力均为100 kPa 。活塞外的压力维持 100kPa不变。今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T及过程的W,U。解:单原子理想气体A的,双原子理想气体B的因活塞外的压力维持 100kPa不变,过程
15、绝热恒压,Q=Qp=H=0,于是有于是有 22.5T=7895.875K 得 T=350.93K 2-10 已知水(H2O,l)在100的饱和蒸气压ps=101.325 kPa,在此温度、压力下水的摩尔蒸发焓。求在100,101.325 kPa 下使1kg水蒸气全部凝结成液体水时的Q,W,U及H。设水蒸气适用理想气体状态方程。解:过程为 2-11 已知100kPa 下冰的熔点为0,此时冰的比熔化焓。水的均比定压热容。求绝热容器内向1kg 50的水中投入0.1 kg 0的冰后,系统末态的温度。计算时不考虑容器的热容。解:变化过程示意如下 ( 0.1kg,0冰)( 0.1kg,0,水)( 0.1k
16、g,t,水)( 1kg,50,水)( 1kg,t,水)过程恒压绝热:,即, 故 t=38.212-12 已知100kPa 下冰的熔点为0,此时冰的比熔化焓。水和冰的均比定压热容分别为及。今在绝热容器内向1kg 50的水中投入0.8 kg 温度-20的冰。求:(1)末态的温度;(2)末态水和冰的质量。解:过程恒压绝热:,即这个结果显然不合理,只有高温水放出的热量使部分冰熔化为水,而维持在 0,所以末态的温度为 0。(2)设0冰量为 m,则0水量为(500 m)g,其状态示意如下800 g2. Jg-1K-1(273.15 K 253.15K)+(800-m)g333.3 Jg-1 + 1000g
17、4.184 Jg-1K-1(273.15K 323.15K)=0333.3 m = 89440 gm=268g =0.268 kg =冰量水量= 1000+(800-268)g = 1532 g =1.532 kg2-13 100kPa 下,冰(H2O,s)的熔点为0,在此条件下冰的摩尔熔化焓。已知在-100范围内过泠水(H2O,l)和冰的摩尔定压热容分别为Cp,m(H2O,l)=76.28和Cp,m(H2O,s)=37.20。求在常压下及 10下过泠水结冰的摩尔凝固焓。解: H1,m H3,m2-14 已知水(H2O,l)在100的摩尔蒸发焓,水和水蒸气在25100的平均摩尔定压热容分别为和
18、。求在25时水的摩尔蒸发焓。解: H1,m H3,m2-15 25下,密闭恒容的容器中有10g 固体萘C10H8(s)在过量的O2(g)中完全燃烧成CO2(g)和H2O(l)。过程放热401.727 kJ。求(1)的反应进度;(2)C10H8(s)的; (3)C10H8(s)的。解:(1)反应进度:(2)C10H8(s)的:M萘=128.173每摩尔萘的恒容恒温燃烧热为 (3)所以本题所给反应的标准摩尔反应焓为2-16应用附录中有关物质在25的标准摩尔生成焓的数据,计算下列反应的。(1) 4NH3(g)+5O2(g) 4NO(g)+6H2O(g)(2) 3NO2(g)+ H2O(l) 2HNO
19、3(l)+NO(g)(3) Fe2O3(s)+3C(石墨)2Fe(s)+3CO(g)解:计算公式如下:;(1)(2) = (3)= 2-17 应用附录中有关物质的热化学数据,计算25时反应 的标准摩尔反应焓,要求:(1)应用25的标准摩尔生成焓数据;。(2)应用25的标准摩尔燃烧焓数据。解:(1) +- =2(-285.830)+(-379.07)-2(-238.66)kJmol-1 = - 473.52 kJmol-1(2)- =2(-726.51)-(-979.5)kJmol-1 = - 473.52 kJmol-12-18 (1)写出同一温度下下,一定聚集状态分子式为CnH2n的物质的与
20、其之间的关系。(2)若25下环丙烷(g)的,求该温度下环丙烷的。解:(1)CnH2n的物质进行下述反应:故有(2)常压恒定温度25的条件下,环丙烷进行下述反应: 2-19 已知25甲酸乙酯(HCOOCH3,l)的标准摩尔摩尔燃烧焓为-979.5 ,甲酸乙酯(HCOOCH3,l)、甲醇(CH3OH,l)、水(H2O,l)及二氧化碳(CO2,g)的标准摩尔生成焓数据分别为-424.72,-238.66,-285.83及-393.509。应用这些数据求25时下列反应的标准摩尔反应焓。 解:(1)先求 + 2- =所以有= + 2- =2(-393.509)+2(-285.83)-(-979.5)kJ
21、mol-1 = - 379.178 kJmol-1(2) + - =(-379.178)+(-285.83)-(-424.72)-(-238.66)kJmol-1 = - 1.628 kJmol-12-20 已知CH3COOH(g)、CO2(g)和CH4(g)的平均定压热容分别为52.3 Jmol-1K-1,31.4 Jmol-1K-1,37.1 Jmol-1K-1。试由附录中各化合物的标准摩尔生成焓计算1000K时下列反应的。CH3COOH(g)CH4(g)+CO2(g)解:由附录中各物质的标准摩尔生成焓数据,可得在25时的标准摩尔反应焓题给反应的 =(37.7+31.4-52.3)Jmol
22、-1K-1= 16.8Jmol-1K-1所以,题给反应在1000K时的标准摩尔反应焓=-36.12+16.8(1000-298.15)10-3kJmol-1= -24.3kJmol-12-21 甲烷与过量50%的空气混合,为使恒压燃烧的最高温度能达2000,求燃烧前混合气体应预热到多少摄氏度?计算中N2、O2、H2O(g)、CH4(g)、CO2平均定压摩尔热容分别为33.47、33.47、41.84、75.31、54.39Jmol-1K-1,所需其他数据见附录。解:根据题意画出如下方框图:CH4(g)+2O2(g)+O2+t据题意可画出下列方框图:CO2(g)+2 H2O(g)+O2+ 200
23、0绝热、恒压H =0H1 H2CH4(g)+2O2(g)+O2+25CO2(g)+2 H2O(g)+O2+ 25rHm(298K)即 553.45(298.15-T/K)10-3+(-802.34)+1084.81=0所以 T=808.15K或t=535。2-22 1molH2与过量50%空气的混合物的始态为25、101.325kPa。若该混合气体于容器中发生爆炸,试求所能达到的最高温度和压力。设所有气体均可按理想气体处理,H2O(g)、O2及N2的分别为37.66、25.1及25.1Jmol-1K-1。H2(g)+0.5O2(g)+0.25O2+ 25,101.325kPa解:据题意可画出下列方框图:2H2O(g)+0.25O2+ t,pU =0绝热、恒容rUm(298K) U12H2O(g)+0.25O2+ 25即 -=11.753(T/K-298.15) 解得:T=2394.65K所以 T始态=298.15K,p始态=101.325kPa专心-专注-专业