《山东省济宁市2016年中考试题(数学-解析版)(共26页).doc》由会员分享,可在线阅读,更多相关《山东省济宁市2016年中考试题(数学-解析版)(共26页).doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1在:0,2,1,这四个数中,最小的数是()A0B2C1D2下列计算正确的是()Ax2x3=x5Bx6+x6=x12C(x2)3=x5Dx1=x3如图,直线ab,点B在直线b上,且ABBC,1=55,那么2的度数是()A20B30C35D504如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()ABCD5如图,在O中, =,AOB=40,则ADC的度数是()A40B30C20D156已知x2y=3,那么代数式32x+4y的值是()A3B0C6D97如图,将AB
2、E向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是()A16cmB18cmC20cmD21cm8在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示: 参赛者编号 1 2 3 4 5 成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A96,88,B86,86C88,86D86,889如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD10如图,O为坐标原点,四边形OACB是菱形,
3、OB在x轴的正半轴上,sinAOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于()A60B80C30D40二、填空题:本大题共5小题,每小题3分,共15分11若式子有意义,则实数x的取值范围是12如图,ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使AEHCEB13如图,ABCDEF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于14已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h15按一定规律排列的一列数:
4、,1,1,请你仔细观察,按照此规律方框内的数字应为三、解答题:本大题共7小题,共55分16先化简,再求值:a(a2b)+(a+b)2,其中a=1,b=172016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额18某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:(1)求新
5、坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由19某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20如图,正方形ABCD的对角线AC,B
6、D相交于点O,延长CB至点F,使CF=CA,连接AF,ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明21已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算例如:求点P(1,2)到直线y=3x+7的距离解:因为直线y=3x+7,其中k=3,b=7所以点P(1,2)到直线y=3x+7的距离为:d=根据以上材料,解答下列问题:(1)求点P(1,1)到直线y=x1的距离;(2)已知Q的圆心Q坐标为(0,5),半径r为2,判断Q与直线y=x+9的位置关系并说明理由
7、;(3)已知直线y=2x+4与y=2x6平行,求这两条直线之间的距离22如图,已知抛物线m:y=ax26ax+c(a0)的顶点A在x轴上,并过点B(0,1),直线n:y=x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(7,7)(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1在:0,2,1
8、,这四个数中,最小的数是()A0B2C1D【考点】有理数大小比较【分析】根据有理数大小比较的法则解答【解答】解:在0,2,1,这四个数中,只有2是负数,最小的数是2故选B2下列计算正确的是()Ax2x3=x5Bx6+x6=x12C(x2)3=x5Dx1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3如图,直线ab,点B在直线b上,且ABBC,1=55,那么2的度数是()A20B3
9、0C35D50【考点】平行线的性质【分析】由垂线的性质和平角的定义求出3的度数,再由平行线的性质即可得出2的度数【解答】解:ABBC,ABC=90,3=180901=35,ab,2=3=35故选:C4如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()ABCD【考点】简单几何体的三视图【分析】观察几何体,找出左视图即可【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5如图,在O中, =,AOB=40,则ADC的度数是()A40B30C20D15【考点】圆心角、弧、弦的关系【分析】先由圆心角、弧、弦的关系求出AOC=AOB=50,再由圆周角定理即可得出
10、结论【解答】解:在O中, =,AOC=AOB,AOB=40,AOC=40,ADC=AOC=20,故选C6已知x2y=3,那么代数式32x+4y的值是()A3B0C6D9【考点】代数式求值【分析】将32x+4y变形为32(x2y),然后代入数值进行计算即可【解答】解:x2y=3,32x+4y=32(x2y)=323=3;故选:A7如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是()A16cmB18cmC20cmD21cm【考点】平移的性质【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=
11、AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:ABE向右平移2cm得到DCF,EF=AD=2cm,AE=DF,ABE的周长为16cm,AB+BE+AE=16cm,四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm故选C8在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示: 参赛者编号 1 2 3 4 5 成绩/分96 88 86 93 86 那么这五位同学演讲成绩的众数与中位数依次是()A96,88,B86,86C88,86D86,88【考点】众数;中位
12、数【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD【考点】概率公式;利用轴对称设计图案【分析】由在44正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5
13、种情况,直接利用概率公式求解即可求得答案【解答】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B10如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sinAOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于()A60B80C30D40【考点】反比例函数与一次函数的交点问题【分析】过点A作AMx轴于点M,过点F作FNx轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐
14、标特征即可求出a、b的值,通过分割图形求面积,最终找出AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论【解答】解:过点A作AMx轴于点M,过点F作FNx轴于点N,如图所示设OA=a,BF=b,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a, a)点A在反比例函数y=的图象上,aa=48,解得:a=10,或a=10(舍去)AM=8,OM=6四边形OACB是菱形,OA=OB=10,BCOA,FBN=AOB在RtBNF中,BF=b,sinFBN=,BNF=90,FN=BFsinFBN=b,BN=b,点F的坐标为(10+
15、b, b)点B在反比例函数y=的图象上,(10+b)b=48,解得:b=,或b=(舍去)FN=,BN=5,MN=OB+BNOM=1SAOF=SAOM+S梯形AMNFSOFN=S梯形AMNF=(AM+FN)MN=(8+)(1)=(+1)(1)=40故选D二、填空题:本大题共5小题,每小题3分,共15分11若式子有意义,则实数x的取值范围是x1【考点】二次根式有意义的条件【分析】根据二次根式的性质可以得到x1是非负数,由此即可求解【解答】解:依题意得x10,x1故答案为:x112如图,ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合
16、要求即可),使AEHCEB【考点】全等三角形的判定【分析】开放型题型,根据垂直关系,可以判断AEH与CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了【解答】解:ADBC,CEAB,垂足分别为D、E,BEC=AEC=90,在RtAEH中,EAH=90AHE,又EAH=BAD,BAD=90AHE,在RtAEH和RtCDH中,CHD=AHE,EAH=DCH,EAH=90CHD=BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE可证AEHCEB故填空答案:AH=CB或EH=EB或AE=CE13如图,ABCDEF,AF与BE相交于点G,且AG=2,GD=1,DF=5
17、,那么的值等于【考点】平行线分线段成比例【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论【解答】解:AG=2,GD=1,AD=3,ABCDEF,=,故答案为:14已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h【考点】分式方程的应用【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h故答案为:8015按
18、一定规律排列的一列数:,1,1,请你仔细观察,按照此规律方框内的数字应为【考点】规律型:数字的变化类【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解【解答】解:把整数1化为,得,(),可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:三、解答题:本大题共7小题,共55分16先化简,再求值:a(a2b)+(a+b)2,其中a=1,b=【考点】整式的混合运算化简求值【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值【解答】解:原式=a22ab+a2+2ab+b2=2a2+b2,
19、当a=1,b=时,原式=2+2=4172016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额【考点】条形统计图;折线统计图【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8
20、1.71.21.3=1.6(万元),补全条形图如图:(2)1.317%=0.221(万元)答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元18某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由【考点】解直角三角形的应用-坡度坡角问题【分析】(1)由新坡面的坡度为1:,可得tan=tanCAB=,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CDAB于点D,由坡面BC的坡度为1:1,新坡面的坡
21、度为1:即可求得AD,BD的长,继而求得AB的长,则可求得答案【解答】解:(1)新坡面的坡度为1:,tan=tanCAB=,=30答:新坡面的坡角a为30;(2)文化墙PM不需要拆除过点C作CDAB于点D,则CD=6,坡面BC的坡度为1:1,新坡面的坡度为1:,BD=CD=6,AD=6,AB=ADBD=668,文化墙PM不需要拆除19某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地
22、计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用【分析】(1)设年平均增长率为x,根据:2014年投入资金给(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和500万,列不等式求解可得【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得
23、:x=0.5或x=2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:10008400+(a1000)5400,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励20如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明【考点】正方形的性质【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据
24、等腰三角形三线合一的性质证得CEAF,进一步得出BAF=BCN,然后通过证得ABFCBN得出AF=CN,进而证得ABFCOM,根据相似三角形的性质和正方形的性质即可证得CN=CM【解答】解:(1)四边形ABCD是正方形,ABD是等腰直角三角形,2AB2=BD2,BD=,AB=1,正方形ABCD的边长为1;(2)CN=CM证明:CF=CA,AF是ACF的平分线,CEAF,AEN=CBN=90,ANE=CNB,BAF=BCN,在ABF和CBN中,ABFCBN(AAS),AF=CN,BAF=BCN,ACN=BCN,BAF=OCM,四边形ABCD是正方形,ACBD,ABF=COM=90,ABFCOM,
25、=,=,即CN=CM21已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算例如:求点P(1,2)到直线y=3x+7的距离解:因为直线y=3x+7,其中k=3,b=7所以点P(1,2)到直线y=3x+7的距离为:d=根据以上材料,解答下列问题:(1)求点P(1,1)到直线y=x1的距离;(2)已知Q的圆心Q坐标为(0,5),半径r为2,判断Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=2x+4与y=2x6平行,求这两条直线之间的距离【考点】一次函数综合题【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离
26、公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=2x+4上任意取一点,然后计算这个点到直线y=2x6的距离即可【解答】解:(1)因为直线y=x1,其中k=1,b=1,所以点P(1,1)到直线y=x1的距离为:d=;(2)Q与直线y=x+9的位置关系为相切理由如下:圆心Q(0,5)到直线y=x+9的距离为:d=2,而O的半径r为2,即d=r,所以Q与直线y=x+9相切;(3)当x=0时,y=2x+4=4,即点(0,4)在直线y=2x+4,因为点(0,4)到直线y=2x6的距离为:d=2,因为直线y=2x+4与y=2x
27、6平行,所以这两条直线之间的距离为222如图,已知抛物线m:y=ax26ax+c(a0)的顶点A在x轴上,并过点B(0,1),直线n:y=x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(7,7)(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由【考点】二次函数综合题【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求
28、最短路径的方法,首先通过B点关于l的对称点B来确定P点位置,再求出直线BE的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确FDG=90,得出直线DG解析式的k值与直线FD解析式的k值乘积为1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标【解答】解:(1)抛物线y=ax26ax+c(a0)的顶点A在x轴上配方得y=a(x3)29a+1,则有9a+1=0,解得a=A点坐标为(3,0),抛物线m的解析式为y=x2x+1;(2)点B关于对称轴直线x=3的对称点B为(6,1)连接EB交l于点
29、P,如图所示设直线EB的解析式为y=kx+b,把(7,7)(6,1)代入得 解得,则函数解析式为y=x+把x=3代入解得y=,点P坐标为(3,);(3)y=x+与x轴交于点D,点D坐标为(7,0),y=x+与抛物线m的对称轴l交于点F,点F坐标为(3,2),求得FD的直线解析式为y=x+,若以FQ为直径的圆经过点D,可得FDQ=90,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=14,则DQ的直线解析式为y=2x14,设点Q的坐标为(a,),把点Q代入y=2x14得 =2a14解得a1=9,a2=15点Q坐标为(9,4)或(15,16)专心-专注-专业