《一次函数图像应用题精选(共13页).doc》由会员分享,可在线阅读,更多相关《一次函数图像应用题精选(共13页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上100200204060x(分钟)y(元)1、某移动公司采用分段计费的方法来计算话费,月通话时间(分钟)与相应话费(元)之间的函数图象如图所示:()月通话为100分钟时,应交话费元;()当时,求与之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:() 分别求出表示甲、乙两同学登山过程中路程(千米)与时间(时)的函数解析式;(不要求写出自变量的取值范围)() 当甲到达山顶时,乙行进到山路上的某点处,
2、求点距山顶的距离;() 在()的条件下,设乙同学从处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点处与乙相遇,此时点与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?(千米)(时)612123甲乙甲乙122.5310202530O图象与信息3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度(cm)与燃烧时间的关系如图所示请根据图象所提供的信息解答下列问题:()甲、乙两根蜡烛燃烧前的高度分别是, 从点燃到燃尽所用的时间分别是;()分别求甲、乙两根蜡烛燃烧时与之间的函数关系式;()当为何值时,甲、乙两根蜡烛在燃烧过程中的高度
3、相等?01001306589y(元)x(度)6、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法若某户居民每月应交电费(元)与用电量(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:() 分别写出和时,与的函数关系式;() 利用函数关系式,说明电力公司采取的收费标准;() 若该用户某月用电62度,则应缴费多少元?() 若该用户某月缴费105元时,则该用户该月用了多少度电?05202630售出土豆数(千克)手中持有钱数(元)8、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与
4、他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是元,问他一共带了多少千克土豆125038(元)(公里)10、小张骑车往返于甲、乙两地,距甲地的路程(千米)与时间(小时)的函数图象如图所示(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米时(小时)(千米)(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次请在图中画出小李距甲地的路程(千米)与时间(小时)的函数的大致图象() 小王与小张同时出发,
5、按相同路线前往乙地,距甲地的路程(千米)与时间(小时)的函数关系式为小王与小张在途中共相遇几次?请你计算第一次相遇的时间x(分钟)0y(米)10008006004002002 4 5 6 8 10AB11、小文家与学校相距1000米某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校下图是小文与家的距离(米)关于时间(分钟)的函数图象请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段所在直线的函数解析式;(3)当分钟时,求小文与家的距离13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘图是反映所挖河渠长度与
6、挖掘时间之间关系的部分图象请解答下列问题:乙甲(时)(1)乙队开挖到30米时,用了小时开挖6小时时,甲队比乙队多挖了米;(2)请你求出:甲队在的时段内,与之间的函数关系式;乙队在的时段内,与之间的函数关系式;开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米时,结果两队同时完成了任务问甲队从开挖到完工所挖河渠的长度为多少米?091630t/minS/km401214、右图是某汽车行驶的路程S(km)与时间t(min)的 函 数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了
7、多长时间?(3)当16t30时,求S与t的函数关系式.S(千米)t(时)0 1022.57.50.531.5lBlA15、如图,分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。(1)B出发时与A相距 千米。(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时。(1分)(3)B出发后 小时与A相遇。(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米。在图中表示出这个相遇点C。(5)求出A行走的路程S与时间t的函数关系式。16、2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕20日上午9时,参赛龙舟从黄陵庙同
8、时出发其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示甲队在上午11时30分到达终点黄柏河港(1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远? 17、刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0a3)小时再往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4a)千米/时。若二分队在营地不休息,问二分队几小时能赶到A镇?若二分队和一分队同时赶到A镇,二分队
9、应在营地休息几小时?下列图象中,分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。18、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组
10、的汽车排除故障后,立即提速赶往灾区请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定19、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系(第19题)ABCDOy/km90012x/h4根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问
11、题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇求第二列快车比第一列快车晚出发多少小时?20、为预防“手足口病”,某校对教室进行“药熏消毒”已知药物燃烧阶段,室内每立方米空气中的含药量(mg)与燃烧时间(分钟)成正比例;燃烧后,与成反比例(如图所示)现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg据以上信息解答下列问题:(1)求药物燃烧时与的函数关系式(2)求药物燃烧后与的函数关系式(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?25.(2009年
12、咸宁市)某车站客流量大,旅客往往需长时间排队等候购票经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数(人)与售票时间(分)的函数关系如图所示;每个售票窗口票数(人)与售票时间(分)的函数关系如图所示某天售票厅排队等候购票的人数(人)与售票时间(分)的函数关系如图所示,已知售票的前分钟开放了两个售票窗口(1)求的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;143124030078ax/分y/人OOO(图)(图)(图)x/分y/人x/分y/人(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗
13、旨,决定增设售票窗口若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?例6(2010年泰州第28题)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震。某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区。乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)。图中的折线、线段分别表示甲、乙两组所走路程(千米)、(千米)与时间x(小时)之间的函数关系对应的图像。请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了_小时
14、;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区。请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不过25千米。请通过计算说明,按图像所表示的走法是否符合约定。解析:本题由甲乙两个互相关联但又不同的行程问题构成,函数图象之间彼此相交。要解决好所求问题,必须深入认识和理解图象中的信息,尤其是已知点坐标的实际意义。(1)由图象可知:AB段发生故障。时间为4.9-3=1.9 (小时)(2)要求甲组的汽车在排除故障时,距出发点的路程是多少千米。即要求出B点的纵坐标。点B在线段BD上,且横坐标为4.9。只需求出BD
15、所在直线的解析式即可。C是BD、EF交点,C点的横坐标为6,求出直线EF的解析式,则可得到C点坐标。从而求出BD解析式,得到B点纵坐标。设直线EF的解析式为乙=kx+b点E(1.25,0)、点F(7.25,480)均在直线EF上 解得 直线EF的解析式是y乙=80X-100 点C在直线EF上,且点C的横坐标为6,点C的纵坐标为806100=380 点C的坐标是(6,380)设直线BD的解析式为y甲 = mx+n点C(6,380)、点D(7,480)在直线BD上 解得 BD的解析式是y甲=100X -220 B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270)甲组在排除故障时,
16、距出发点的路程是270千米。(3)符合约定由图像可知:甲、乙两组第一次相遇后在B和D相距最远。在点B处有y乙y甲=804.9100(1004.9220)=22千米25千米在点D有y甲y乙=1007220(807100)=20千米25千米按图像所表示的走法符合约定多个函数图象求式问题的一般策略:一题中有多个函数图象时,尤其要关注图象交点的坐标。因其交点坐标同时满足两个图象的关系式。分析多个函数图象时,还应关注其交点两侧图象的上下位置关系。图象在上方的函数图象,同一个自变量所对应的函数值大。由此可比较两个函数图象所表示函数式之间的变化关系。例4.(2008年长沙第25题)在平面直角坐标系中,一动点
17、P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图)按一定方向运动。图是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分. (图) (图) (图) (1)s与之间的函数关系式是: ;(2)与图相对应的P点的运动路径是: ;P点出发 秒首次到达点B;(3)写出当3s8时,y与s之间的函数关系式,并在图中补全函数图象.解析:(1)由图象可知为正比例函数。S=(t0) (2)由图象,M纵坐标为0变为1,则路径为:MDAN, 10秒(3)当3s5,即P从A到B时,
18、y=4-s;当5s7,即P从B到C时,y=-1; 当7s8,即P从C到M时,y=s-8(补全图象略) 求解几何图形中的动点问题一般策略:解决几何图形中的动态问题,关键是看动点运动的路径,在不同的路径上,所对应的线段长(高)等不同,由此引起其它变量的变化。因此根据不同路径以确定自变量的变化区间至关重要。在不同的区间上求函数表达式,应注意紧密结合几何图形的特征,会将将函数中的变量关系转化为几何图形上的对应线段关系。动点(动线)问题,引起图形中相关量的变化,多以面积为主。本题给出的坐标变化相对降低了难度。但给出的图象较多,涉及到路程与时间、路程与坐标三个变量,共两种函数,在解决问题时,应认真审题。例
19、3.(2008年襄樊第23题)我国是世界上严重缺水的国家之一为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(ba)收费设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当x10时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?解析:(1)当时,有将,代入,得 用8吨水应收水费(元) (2)当x1
20、0时,有 将,代入,得 故当x10时,(3)因所以甲、乙两家上月用水均超过10吨设甲、乙两家上月用水分别为吨,吨,则 解之,得故居民甲上月用水16吨,居民乙上月用水12吨 解分段价格问题的一般策略:分段函数的特征是:不同的自变量区间所对应的函数式不同,其函数图象是一个折线。解决分段函数问题,关键是要与所在的区间相对应。分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上。在求解析式要用好“折点”坐标,同时在分析图象时还要注意“折点”表示的实际意义,“折点”的纵坐标通常是不同区间的最值。分段函数应用广泛,在收费问题、行程问题及几何动态问题中都有应用。例7(2008年泰安第25题)某市种
21、植某种绿色蔬菜,全部用来出口为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少?并求出总收益的最大值解析:(1)政府没出台补贴政策前,这
22、种蔬菜的收益额为:(元)(2)由题意可设与的函数关系为 将代入得 种植亩数与政府补贴的函数关系为同理可得,每亩蔬菜的收益与政府补贴的函数关系为(3)由题意 u 当,即政府每亩补贴450元时,全市的总收益额最大,最大为元解多个变量及其最值问题的一般策略:一个问题中涉及多个变量,往往对应着多个函数式。因此在求解过程中,一定要理清变量之间的对应关系,正确求出不同的函数式。求函数的最值问题,一次函数主要运用一次函数性质求。二次函数则可用配方法或公式法求。对于函数式的求取,则主要是用列式法和待定系数法.20、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设
23、汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?32.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港设甲、乙两船行驶x(h)后,与B港的距离分别为、(km),、与x的函数关系如图所示(1)填空:A、C两港口间的距离为 km, ;(2)求图中
24、点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围Oy/km9030a0.53P甲乙x/h34.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像(1)A、B两地的距离是 千米,甲车出发 小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两
25、车相距150千米1.52300x(时)Oy(千米)30 35张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量与行驶时间的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由 30一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线
26、表示从两车出发至快车到达乙地过程中y与x之间的函数关系(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)(个)1234567701020304050608090图3(1,19)(4,70)(3,53)(2,36)31春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票经调查发现,每天开始售票时,约有400
27、人排队购票,同时又有新的旅客不断进入售票厅排队等候购票售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票)(1)求a的值(2)求售票到第60分钟时,售票听排队等候购票的旅客人数(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过10
28、00人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入成本费用平安保险费) 3、教室里放有一台饮水机,饮水机上有两个放水管。课间同学们到饮水机前用茶杯接水。假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。
29、两个放水管同时打开时,它们的流量相同。放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。饮水机的存水量y(升)与放水时间x(分钟)的函数关系如下图所示:求出饮水机的存水量y(升)与放水时间x(分钟)(x2)的函数关系式;如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟?按的放法,求出在课间10分钟内最多有多少个同学能及时接完水?乙甲图1图象与信息4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度与挖掘时间之间的关系如图1所示,请根据图象所提供的信息解答下列问题:乙队开挖到30m时,用了h开挖6h时甲队比乙队多挖了m;请你求出:
30、甲队在的时段内,与之间的函数关系式;乙队在的时段内,与之间的函数关系式;当为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受乌鸦喝水故事的启发,利用量桶和体积相同的小球进行了如下操作:49cm30cm36cm3个球有水溢出(第23题)图2请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高_;图2(2)求放入小球后量桶中水面的高度()与小球个数(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?11、小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。(1)根据图象提供的数据,求比赛开
31、始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答9、如图,表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;表示摩托厂一天的销售成本与销售量之间的关系。(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)一天的销售量超过多少辆时,工厂才能获利?20、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系
32、图象(两条射线)如图4,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数(个)1234彩纸链长度(cm)19365370(个)1234567701020304050608090图3(1,19)(4,70)(3,53)(2,36)(1)把上表中的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想与
33、的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?11、小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答30一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距
34、离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)32.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港设甲、乙两船行驶x(h)后,与B港的距离分别为、(km),、与x的函数关系如图所示(1)填空:A、C两港口间的距离为 km, ;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围Oy/km9030a0.53P甲乙x/h专心-专注-专业