《仪器分析总结习题(共28页).docx》由会员分享,可在线阅读,更多相关《仪器分析总结习题(共28页).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一章 气象色谱法1. 死时间tM 2. 保留时间tR 3. 调整保留时间tR 4. 死体积VM 5. 保留体积VR6. 调整保留体积 7.相对保留值21 8.标准偏差 9.半峰宽度Y1/2 10.峰底宽度Y1、若一个溶质的分配比为0.2,计算它在色谱柱流动相中的质量分数(83.3%)2、在一根色谱柱上分离苯和甲苯,保留时间分别为2.5和5.5min,死时间为1min,问:甲苯停留在固定相中的时间是苯的几倍? 甲苯的分配系数是苯的几倍? (3,3)3、某色谱条件下,组分A的分配比为4,死时间为30s,求组分A的保留时间(150s)4、下列哪些参数改变会引起相对保留值变
2、化? A、柱长 B、相比 C、柱温 D、流动相流速5、在气液色谱中,下列变化对溶质的保留体 积几乎没有影响的是 A、改变载气流速 B、改变固定液化学性质 C、增加柱温 D、增加柱长 E、增加固定液的量例1 已知某组分峰Y40s,tR=400s。计算理论塔板数n。例2 已知一根1米长的色谱柱,neff1600块,组份A在柱上的调整保留时间为100s,试求A峰的半峰宽和Heff。例3 在一定条件下,两个组分的调整保留时间分别为85秒和100秒,要达到完全分离,即R=1.5 。计算需要多少块有效塔板。若填充柱的塔板高度为0.1 cm,柱长是多少?解: 2,1= 100 / 85 = 1.18 n有效
3、 = 16R2 2,1 / ( 2,1 -1) 2 = 161.52 (1.18 / 0.18 ) 2 = 1547(块) L有效 = n有效H有效 = 15470.1 = 155 cm 即柱长为1.55米时,两组分可以得到完全分离。 例2 有一根1m长的柱子,分离组分1和2得到如图的色谱图。图中横坐标l为记录笔走纸距离。若欲得到 R=1.2的分离度,有效塔板数应为多少?色谱柱要加到多长?解:先求出组分2对组分1的相对保留值r2,1(1)从图中可以看出,tR2=17min, Y2=1min, 所以; n = 16(tR2/Y2)2 =4624(2) tR1= tR1- tM =14-1=13m
4、in tR2=tR2 tM = 17-1 = 16min(3)相对保留值 = tR2/tR1=16/13 neff=16(tR2/Y)2=4096 Heff=L/neff=3/4096 根据公式:L=16R2 Heff =16(1.5)2 (16/13)/(16/13-1)2 (3/4096) =0.75m 另一种算法25、 丙烯和丁烯的混合物进入气相色谱柱得到如下数据组分保留时间/min 峰宽/min空气丙烯(P)丁烯(B)0.53.54.80.20.81.0计算:(1)丁烯的分配比是多少?(2)丙烯和丁烯的分离度是多少?解: (1)kB= tR(B)/tM =(4.8-0.5)/0.5=8
5、.6 (2) R = tR(B)-tR(P)2/(YB+YP)=(4.8-3.5) (1.0+0.8) =1.44例6 已知物质A和B在一个30.0cm柱上的保留时间分别为16.40和17.63分钟。不被保留组分通过该柱的时间为1.30分钟,峰宽为1.11和1.21mm,计算:(1) 柱的分辨本领;(2) 柱的平均塔板数;(3) 塔板高度;(4) 达到1.5分离度所需的柱长度。解: (1) R=2(17.63-16.40)/(1.11+1.21)=1.06 (2) nA=16(16.40/1.11)2=3493 nB=16(17.63/1.21)2=3397 nav=(3493+3397)/2
6、=3445 (3) H=L/n=30.0/3445=8.70810-3cm =8.7110-3cm (4) n1/n2=(R1/R2)2 n2=34452.25/1.124=6.90103 L= nH =6.901038.7110-3=60.1cm7 、已知某色谱柱的理论塔板数为3600,组分A和B在该柱上的保留时间为27mm和30mm,求两峰的峰底宽和分离度。Y1=27/(3600/16)1/2=1.8 mm Y2=30/(3600/16)1/2=2.0 mm R2(30-27)/(1.8+2)6/3.81.6例8 已知一色谱柱在某温度下的速率方程的A=0.08cm; B=0.65cm2/s
7、; C=0.003s, 求最佳线速度和最小塔板高H。解: 欲求 u最佳和H最小,要对速率方程微分,即 dH/d d(A+B/ +C)/d -B/ 2+C0 最佳线速: u最佳(B/C)1/2 最小板高: H最小A+2(BC)1/2 可得 最佳(0.65/0.003)1/214.7cm/s H最小0.08+2(0.650.003)1/20.1683cm例题:60时在角鲨烷柱上正己烷,正庚烷和某组分的调整保留时间分别为262.1s、663.1s、359.4s,求该组分的保留指数,并确定该组分是什么物质。解:由于tR(6)262.1,tR(7)663.1,tR(x)359.4,n6 Ix1006(l
8、g tR(x) lg tR(6)/ (lg tR(7)lg tR(6) 1006(lg359.4lg262.1)/(lg663.1-lg262.1) 644 与文献值比较,可知该组分为苯。解:先利用峰高乘以半峰宽计算各峰面积,然后利用归一化法求各组分质量分数。根据公式A=hY1/2, 求得各组分峰面积分别为:124.16; 249.84; 254.22; 225.4从而求得各组分质量分数分别为:苯酚:12.71%; 邻甲酚:28.58%; 间甲酚:31.54%; 对甲酚:27.15%例 将纯苯与某组分A配成混合液,进行气相色谱分析,苯的样品量为0.435g时,峰面积为4.00cm2,组分A的样
9、品量为0.653g时的峰面积为 6.50cm2,求组分A以苯为标准时的相对校正因子。例一、分析乙醛和丙酮的混合试样,取1L试样进行色谱分析,乙醛的峰面积为36.20cm2,丙酮的峰面积为28.19cm2。制备纯乙醛和丙酮的标准溶液时,称取乙醛4.685g,丙酮3.680g,混合后取1L该混合物进行色谱分析,测得乙醛和丙酮的峰面积分别为38.86cm2 和32.68cm2。计算试样中乙醛和丙酮的质量分数。解:单点校正法。P55公式 标准溶液中:乙醛:s=4.685/(4.685+3.680)=56% 丙酮: s=3.680/(4.685+3.680)=44%所以:样品中乙醛:i=(56%/38.
10、86)36.20=52.2%丙酮:i=(44% /32.68)28.19=37.9%1、当色谱峰的半峰宽为2mm,保留时间为4.5min,死时间为1min,色谱柱长为2m,记录仪纸速为2cm/min,计算色谱柱的理论塔板数,塔板高度以及有效理论塔板数,有效塔板高度。 2、用一根2米长色谱柱将两种药物A和B分离,实验结果如下:空气保留时间30秒,A与B的保留时间分别为230秒和250秒,B峰峰宽为25秒。求该色谱柱的理论塔板数,两峰的分离度。若将两峰完全分离,柱长至少为多少?第二章、高效液相色谱法1、梯度洗脱与程序升温的区别梯度洗提的实质是通过不断改变流动相的强度,来调整混合样品中个组分的k值,
11、使所有谱带都以最佳平均k值通过色谱柱。流动相强度包括溶质的极性、pH值和离子强度等。它所起的作用与气相色谱中的程序升温相仿,所不同的是梯度洗提中溶质k值的变化是通过溶剂的极性、 pH值和离子强度来实现的,而不是借改变温度来达到的。2、液相色谱法的流动相极性顺序,流动相极性与样品洗脱顺序的关系正相色谱固定液极性 流动相极性(NLLC)对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定液的极性。极性小的组分先出柱,极性大的组分后出柱适于分离极性组分。反相色谱固定液极性 甲酰胺 乙腈 甲醇 乙醇 丙醇 丙酮 二氧六环 四氢呋喃 甲乙酮 正丁醇 乙酸乙酯 乙醚 异丙醚 二氯甲烷氯仿溴乙烷苯四氯
12、化碳二硫化碳环己烷己烷煤油(最小)。5、离子对色谱法的特点有正相离子对色谱法和反相离子对色谱法之分,后者应用广泛;反相离子对色谱法解决了难分离混合物的分离问题;可借助离子对的生成引入紫外吸收或发荧光的基团,提高检测灵敏度。6、空间排阻色谱法的原理试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。太大分子不能进入,直接通过柱子并首先在色谱图上出现;中等大小分子有些空穴能进,有些空穴不能进;小分子可进入胶孔渗透到颗粒中,在色谱图上后出现。溶剂分子最小,在色谱图上最后出现。洗脱次序决定于分子质量大小和形状。适于分离分子质量较大的化合物(103105)。1.一般而言,流动相选择对分离基本无影响的
13、是液固吸附色谱;液液分配;离子交换;(空间排阻)2.选择合适的高效液相色谱法分离以下物质正相色谱;反相色谱;离子交换;分子排阻(1)极性较低化合物 正相色谱(2) 中高极性分子型化合物 反相色谱(3)分子量大于2000的高分子化合物 空间排阻(4)离子型或可离解化合物 离子交换3.分离结构异构体,最适当的选择(吸附色谱);离子对色谱;空间排阻;离子交换 原子发射光谱法1、 能量次序 2、为什么原子光谱为线状光谱,分子光谱为带状光谱?由于原子光谱不涉及振动和转动能级跃迁,只有电子能级跃迁,原子的各个能级是量子化的,电子的跃迁也是不连续的;而分子光谱形成过程不但存在电子能级,还包括振动能级和转动能
14、级的跃迁。而且三者的能量次序是:E电 E振 E转2、 原子发射光谱仪构造光源种类及适用范围:3、原子发射光谱法基本原理: 根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。(发射光谱的产生):原子的外层电子由高能级向低能级跃迁,多余能量以电磁辐射的形式发射出去,这样就得到了发射光谱。4相关术语:共振线:在所有原子谱线中,凡是由各个激发态回到基态所发射的谱线非共振线:激发态与激发态之间跃迁所产生的谱线灵敏线:元素的最特征谱线,一般主共振线为灵敏线。最后线:当元素含量减小到最低时,仍然坚持到最后出现的谱线。含量低时,最后线为灵敏线,含量高时不一定。分析线:用来进行定性定
15、量分析的谱线5、定性及定量分析依据:定性原理:由于原子或离子的能级很多并且不同元素的结构是不同的,因此对特定元素的原子或离子可产生一系不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。定量原理:待测元素数目越多,其激发态原子的密度也越大,发射的谱线越强,据此可进行-定量分析。6、选择合适的激发光源某经济作物植物体进行元素的定性全分析 直流电弧炼钢厂炉前12种元素定量分析 高压火花钢中锰的定量分析 交流电弧铁矿石定量全分析 交流电弧头发各元素定量分析 交流电弧/ICP水源调查6种元素(Cr、Mn、Cu、Fe、Zn、Pb )定量分析 ICP7、(6分)下图为乳剂特性曲线,说明AB
16、、BC、CD段的曝光情况,并写出黑度S与曝光量H间的线性关系方程式,指出线性方程中的斜率及其在横坐标上截距的物理意义。AB段曝光不足,BC段曝光正常,CD段曝光过量。(2分)乳剂特性曲线方程 S = g(lgH - lgHi)(2分)g为线性部分斜率,称为乳剂的反衬度,表示乳剂在曝光量改变时黑度变化的快慢;(1分)lgHi为线性部分在横轴上的截矩,Hi称惰延量,表示感光板的灵敏度。(1分)1、在谱片板上发现某元素的清晰的 10 级线,且隐约能发现一根 9 级线,但未找到其它任何 8 级线,译谱的结果是 ( )(1) 从灵敏线判断,不存在该元素(2) 既有 10 级线,又有 9 级线,该元素必存
17、在(3) 未发现 8 级线,因而不可能有该元素(4) 不能确定2、 用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明 ( )(1) 惰延量大 (2) 展度大 (3) 反衬度大 (4) 反衬度小3、摄谱法原子光谱定量分析是根据下列哪种关系建立的?(N0-基态原子数,S-分析线对黑度差, c-浓度, I-分析线强度, S-黑度) (1) I N0 (2) S lgc (3) I lgc (4) S lgN04、几种常用光源中,产生自吸现象最小的是 ( )(1) 交流电弧 (2) 等离子体光 (3) 直流电弧 (4) 火花光源5、某摄谱仪刚刚可以分辨 310.0305 nm 及 309.997
18、0 nm 的两条谱线,则用该摄谱仪可以分辨出的谱线组是 (1)Si 251.61 Zn 251.58 nm; (2) Ni 337.56 Fe 337.57 nm (3) Mn 325.40 Fe 325.395 nm; (4) Cr 301.82 Ce 301.88 nm6、用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明 (1) 惰延量大; (2) 展度大; (3) 反衬度大; (4) 反衬度小 原子吸收光谱法1、原子吸收光谱分析基本原理 原子吸收光谱法是一种基于待测基态原子对特征谱线的吸收而建立的一种分析方法。2、吸收线轮廓的表示方法表征吸收线轮廓的参数:中心频率nO:最大吸收系数
19、对应的频率;半宽度nO :K0/2处的宽度3、 影响谱线宽度的因素(1) 自然变宽 (2)多普勒(Doppler)变宽 (3)碰撞变宽(4)其他因素:场致变宽、自吸效应4、根据爱因斯坦辐射量子理论,谱线的积分吸收与火焰中基态原子数的关系为:其中:e为电子电荷;m为电子质量;c为光速;N0为基态原子密度; f为振子强度,表示的是每个原子中能被入射光 激发的平均电子数。对于给定的元素,f为一常数。4、 用峰值吸收代替积分吸收的必要条件(1)锐线光源发射线的中心频率=原子吸收线的中心频率(2)发射线的半宽度 吸收线的半宽度1. 原子吸收光谱法中,测得的吸光度为( )A. 溶液对光源辐射的峰值吸收 B
20、.原子对光源辐射的峰值吸收C.待测元素基态原子对光源辐射的峰值吸D.待测元素基态原子对光源辐射的积分吸收2在高温下基态原子数与激发态原子数相比A. 几乎相等 B. 激发态原子数远多于基态原子数 C. 基态原子数远多于激发态原子数 D. 无规律3. 在原子吸收分光光度法中,原子蒸气对共振辐射的吸收程度与 ( ) A. 与入射光强度I0有线性关系 B. 基态原子数N0成正比 C. 激发态原子数Nj成正比 D. 被测物质Nj / N0成正比4. 原子吸收分光光度法需用锐线光源,这是因为A. 扣除背景吸收 B. 增加测定灵敏度 C. 测定被测组分的峰值吸收 D. 去除谱线干扰5. 在原子吸收光谱法中,
21、若用连续光源代替空心阴极灯,测得的吸光度( )A.与被测物浓度成正比 B. 与单位体积基态原子数成正比C. 与被测元素浓度成正比 D. 几乎为零6、原子吸收分光光度计的构造构成光源、原子化器、分光系统、检测系统等。7、锐线光源定义作用及工作原理锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。作用:提供待测元素的特征光谱;获得较高的灵敏度和准确度。工作原理:8、原子化器种类及特点:(1)火焰原子化器(2)石墨炉原子化器:需样量少,灵敏度高。L:几L;S:0.1-10mg试样利用率高,原子化效率达90%;可直接测定粘度较大的试样或固体试样;整个原子化过程是在一个密闭的配有冷却装置中进
22、行,较安全;因采用人工加样,精密度不高,装置复杂。1、石墨炉原子吸收法与火焰法相比,其优点是( ) A.灵敏度高 B. 重现性好 C. 分析速度快 D. 背景吸收小2、在原子吸收分析中,测定元素的灵敏度,在很大程度取决于( )A.空心阴极灯 B. 原子化系统 C. 分光系统 D. 检测系统3、火焰原子吸收光谱法中,吸光物质是( )A. 火焰中各种原子 B. 火焰中的基态原子C. 火焰中待测元素的原子 D. 火焰中待测元素的基态原子4、干扰及其抑制种类及其消除办法(1)光谱干扰(2)物理干扰(基体干扰):非选择性干扰:消除办法:配制与待测试液基体相似的标准溶液,这是最常用的方法。当配制其基体与试
23、液相似的标准溶液确有困难时,须采用标准加入法。当被测元素在试液中的浓度较高时,可用稀释溶液的方法。(2) 化学干扰 选择性干扰:消除办法:选择合适的原子化方法 加“消电离剂”加入释放剂保护剂加入缓冲剂化学分离法(3) 有机溶剂的影响一填空、原子分光光度计采用( ) 光源,其发射谱线的半宽度( ) 于吸收线半宽度,且两者( )一致。引起原子吸收线变宽因素主要有自然宽度、( )和( )等。其中( )是谱线变宽的最主要因素。多普勒变宽(热变宽),压力变宽(碰撞变宽);多普勒变宽(热变宽);空心阴极灯阳极一般是(),而阴极材料是() ,管内通常充有()钨棒,待测元素的金属或合金,低压惰性气体5、原子吸
24、收过程中关于基态原子数与激发态原子数关系的说法错误的是( )A、基态原子数可近似视为原子总数 B、两者之和即为原子总数 C激发态原子数也有可能等于基态原子数D、基态原子数大于激发态原子数6、为了消除磷酸盐对钙的干扰,可加入EDTA络合剂,将Ca形成EDTA-Ca络合物,EDTA-Ca在火焰中易原子化,从而消除了磷酸盐的干扰,这里的EDTA称为( )A、保护剂 B、释放剂 C、消电离剂 D、缓冲剂7、原子吸收分析对光源进行调制,主要是为了消除 ( ) A、光源透射光的干扰 B、原子化器火焰的干扰 C、背景干扰 D、物理干扰8、原子分光光度计中原子化器的作用是什么火焰原子化器和石墨炉原子化器有何区
25、别?答:作用:提供试样离子转变成原子蒸气的能量。二者区别:(1)原子化原理不同。前者用火焰热原子化,后者用电热;(2)原子化效率不同。前者只有10%左右,后者可达90%以上;(3)灵敏度不同。前者低后者高。(4)基体效应不同。前者小后者大。(5)最高温度不同。前者通常低于后者。9、何谓锐线光源?在原子吸收分光光度分析中为什么要用锐线光源?答:锐线光源是能发射出谱线半宽度很窄的发射线的光源。如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kv在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。这样,一定的峰
26、值吸收系数即可测出一定的原子浓度。 紫外可见光谱1、电子跃迁类型:* 跃迁:指处于成键轨道上的电子吸收光子后被激发跃迁到*反键轨道 n* 跃迁:指分子中处于非键轨道上的n电子吸收能量后向*反键轨道的跃迁 * 跃迁:指不饱和键中的电子吸收光波能量后跃迁到*反键轨道。 n* 跃迁:指分子中处于非键轨道上的n电子吸收能量后向*反键轨道的跃迁。 所需能量大小顺序为: n* * n* C=O特征吸收,化合物只能是酮、醛化合物;2738cm-1是(CO-H),2950cm-1是 (C-H),化合物可能是醛。720cm-1附近有峰,是-CH2-结构特征。因此,化合物可能是CH3CH2CH2CHO11、化合物
27、的组成为C7H8O。解(1)(2)3039cm-1,3001cm-1 是不饱和C-H伸缩振动V=C-H,说明化合物中有不饱和双键2947cm-1是饱和C-H伸缩振动uvC-H ,说明化合物中有饱和C-H键1599cm-1,1503cm-1是芳环骨架振动uVC=C ,说明化合物中有芳环芳环不饱和度为4,这说明该化合物除芳环以外的结构是饱和的1040cm-1及1248cm-1是醚氧键的伸缩振动uVC-O-C ,说明化合物中有C-O-C键756cm-1,694cm-1 是芳环单取代面外弯曲振动g=C-H,说明化合物为单取代苯环化合物12、14、分子式均为C6H12的有机物红外光谱如图所示,写出其结构式,并给出15各峰归属解:W =1+6-12/2=1 推测可能含有一个不饱和键或为环烷烃。依据3030cm-1附近峰的存在,可判断为含有一个不饱和键。(2分)结构式为:CH2=CH(CH2)3CH3 (3分)1:=C-H伸缩振动峰2:-CH3和CH2中C-H伸缩振动峰3:C=C伸缩振动峰4:-CH3变形振动峰5:= CH2面外变形振动峰每个1分,共5分专心-专注-专业