分式方程增根求字母取值范围(共4页).doc

上传人:飞****2 文档编号:13487442 上传时间:2022-04-29 格式:DOC 页数:4 大小:182.50KB
返回 下载 相关 举报
分式方程增根求字母取值范围(共4页).doc_第1页
第1页 / 共4页
分式方程增根求字母取值范围(共4页).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《分式方程增根求字母取值范围(共4页).doc》由会员分享,可在线阅读,更多相关《分式方程增根求字母取值范围(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上分式方程增根1. 已知分式方程有增根,求字母系数的值解答此类问题必须明确增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。(2)增根是将所给分式方程去分母后所得整式方程的根。利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。例1. (2000年潜江市)使关于x的方程产生增根的a的值是( )A. 2B. 2C. D. 与a无关解:去分母并整理,得:因为原方程的增根为x=2,把x=2代入,得a2=4所以故应选C。例2. (1997年山东省)若解分式方程产生增根,则m的值是( )A. 1或2 B. 1或2C. 1或2 D. 1或

2、2解:去分母并整理,得:又原方程的增根是x=0或,把x=0或x=1分别代入式,得:m=2或m=1故应选C。例3. (2001年重庆市)若关于x的方程有增根,则a的值为_。解:原方程可化为:又原方程的增根是,把代入,得:故应填“”。例4. (2001年鄂州市)关于x的方程会产生增根,求k的值。解:原方程可化为:又原方程的增根为x=3,把x=3代入,得:k=3例5. 当k为何值时,解关于x的方程:只有增根x=1。解:原方程可化为:把x=1代入,得k=3所以当k=3时,解已知方程只有增根x=1。评注:由以上几例可知,解答此类问题的基本思路是:(1)将所给方程化为整式方程;(2)由所给方程确定增根(使

3、分母为零的未知数的值或题目给出);(3)将增根代入变形后的整式方程,求出字母系数的值。2. 已知分式方程根的情况,求字母系数的值或取值范围例6. (2002年荆门市)当k的值为_(填出一个值即可)时,方程只有一个实数根。解:原方程可化为:要原方程只有一个实数根,有下面两种情况:(1)当方程有两个相等的实数根,且不为原方程的增根,所以由得k=1。当k=1时,方程的根为,符合题意。(2)方程有两个不相等的实数根且其中有一个是原方程的增根,所以由,得k1。又原方程的增根为x=0或x=1,把x=0或x=1分别代入得k=0,或k=3,均符合题意。综上所述:可填“1、0、3”中的任何一个即可。例7. (2

4、002年孝感市)当m为何值时,关于x的方程无实根?解:原方程可化为:要原方程无实根,有下面两种情况:(1)方程无实数根,由,得;(2)方程的实数解均为原方程的增根时,原方程无实根,而原方程的增根为x=0或x=1,把x=0或x=1分别代入得m=2。综上所述:当或当m=2时,所给方程无实数解。例8. (2003年南昌市)已知关于x的方程有实数根,求m的取值范围。解:原方程化为:要原方程有实数根,只要方程有实数根且至少有一个根不是原方程的增根即可。(1)当m=0时,有x=1,显然x=1是原方程的增根,所以m=0应舍去。(2)当时,由,得。又原方程的增根为x=0或x=1,当x=0时,方程不成立;当。综

5、上所述:当且时,所给方程有实数根。评注:由以上三例可知,由分式方程根的情况,求字母系数的值或取值范围的基本思路是:(1)将所给方程化为整式方程;(2)根据根的情况,由整式方程利用根的判别式求出字母系数的值或取值范围,注意排除使原方程有增根的字母系数的值。3. 已知分式方程无增根,求字母系数的取值范围例9. 当a取何值时,解关于x的方程:无增根?解:原方程可化为:又原方程的增根为x=2或,把x=2或分别代入得:或又由知,a可以取任何实数。所以,当且时,解所给方程无增根。评注:解答此类问题的基本思路是:(1)将已知方程化为整式方程;(2)由所得整式方程求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围。4. 已知分式方程根的符号,求字母系数的取值范围例9. 已知关于x的方程的根大于0,求a的取值范围。解:原方程可化为:所以由题意,得:且所以且例10. 已知关于x的方程的根小于0,求k的取值范围。解:原方程可化为:所以由题意,得:所以评注:解答此类题的基本思路是:(1)求出已知方程的根;(2)由已知建立关于字母系数的不等式,求出字母系数的取值范围,注意排除使原方程有增根的字母系数的值。说明:注意例9与例10的区别,例9有,而例10无这一不等式?请读者思考。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁