讲义基本不等式(共8页).doc

上传人:飞****2 文档编号:13457178 上传时间:2022-04-29 格式:DOC 页数:8 大小:194.50KB
返回 下载 相关 举报
讲义基本不等式(共8页).doc_第1页
第1页 / 共8页
讲义基本不等式(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《讲义基本不等式(共8页).doc》由会员分享,可在线阅读,更多相关《讲义基本不等式(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第3讲基本不等式1基本不等式(1)基本不等式成立的条件:a0,b0(2)等号成立的条件:当且仅当ab时取等号2算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数3利用基本不等式求最值问题已知x0,y0,则(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值是2(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值是(简记:和定积最大)做一做1已知a,b(0,),若ab1,则ab的最小值为_;若ab1,则ab的最大值为_21辨明两个易误点(1)使用基本不

2、等式求最值,“一正,二定、三相等”三个条件缺一不可;(2)连续使用基本不等式求最值要求每次等号成立的条件一致2活用几个重要的不等式a2b22ab(a,bR);2(a,b同号)ab(a,bR);(a,bR)3巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件_利用基本不等式证明不等式_规律方法利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代

3、换法等1“a0且b0”是“”成立的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件A 2若x1,则x的最小值为_5已知a0,b0,ab1,求证:9.在本例条件下,求证4.1.设a,b,c都是正数,求证:abc._利用基本不等式求最值(高频考点)_利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题高考对利用基本不等式求最值的考查常有以下三个命题角度:(1)知和求积的最值;(2)知积求和的最值;(3)求参数的值或范围规律方法利用基本不等式求最值时,要注意其必须满足的三个条件:一正二定三相等(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成

4、和的二项之积转化成定值;要求积的最大值,必须把构成积的因式的和转化成定值;(3)“三相等”即检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值(1)当0xm22m恒成立,则实数m的取值范围是()A(,2)4,)B(,42,)C(2,4)D(4,2)(1)(2)D(3)D2.(1)当x0时,f(x)的最大值为_(2)若x0,a1)的图象恒过定点A,若点A在直线1上,且m,n0,则3mn的最小值为_(4)已知正实数a,b满足a2b1,则a24b2的最小值为_(1)1(2)1(3)16(4)_利用基本不等式解决实际问题_规律方法应用基本不等式解实际问题的步骤:理解题意,设

5、变量;建立相应的函数关系式,把实际问题抽象成求函数的最大值或最小值问题;在定义域内,求出函数的最大值或最小值;写出正确答案小王大学毕业后,决定利用所学专业进行自主创业经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)x2x(万元)在年产量不小于8万件时,W(x)6x38(万元)每件产品售价为5元通过市场分析,小王生产的商品能当年全部售完(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润年销售收入固定成本流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是

6、多少?当年产量为10万件时,小王在这一商品的生产中所获利润最大最大利润为15万元2.某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少;(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即为原价的85%)问:该厂是否应考虑利用此优惠条件?请说明理由3.某化工企业2014年年底投入100万元,购入一套污水处理设备该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,

7、由于设备老化,以后每年的维护费都比上一年增加2万元设该企业使用该设备x年的年平均污水处理费用为y(单位:万元)(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备,则该企业几年后需要重新更换新的污水处理设备该企业10年后需要重新更换新的污水处理设备考题溯源基本不等式的实际应用(2014高考福建卷)要制作一个容积为4 m3,高为1 m的无盖长方体容器已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_(单位:元)160如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线M

8、N过点C,已知AB3米,AD2米(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值DN长的取值范围是(6,)(单位:米)x2时,矩形花坛的面积最小,为24平方米1(2015青岛模拟)设a,bR,已知命题p:a2b22ab;命题q:,则p是q成立的()A必要不充分条件B充分不必要条件C充要条件 D既不充分也不必要条件选B2(2015上海黄浦模拟)已知a,bR,且ab0,则下列结论恒成立的是()Aab2 B.2C.2 Da2b22ab选C.3若2x2y1,则xy的取值范围是()A0,2 B2,0C2,) D(,

9、2选D 4(2015湖北黄冈模拟)设a1,b0,若ab2,则的最小值为()A32 B6C4 D2选A.5 (2015山东青岛质检)在实数集R中定义一种运算“*”,对任意a,bR,a*b为唯一确定的实数, 且具有性质:(1)对任意aR,a*0a;(2)对任意a,bR,a*bab(a*0)(b*0)则函数f(x)(ex)*的最小值为()A2 B3C6 D8选B.6已知各项为正的等比数列an中,a4与a14的等比中项为2,则2a7a11的最小值为_87某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为yx218x25(xN*)则

10、当每台机器运转_年时,年平均利润最大,最大值是_万元588已知a,bR,且ab50,则|a2b|的最小值是_209(1)当x时,求函数yx的最大值;(2)设0x0,y0,且2x8yxy0,求(1)xy的最小值;(2)xy的最小值xy的最小值为64.xy的最小值为18.1不等式x2x0,b0,方程为x2y24x2y0的曲线关于直线axby10对称,则的最小值为_474(2014高考湖北卷)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为F.(1)如果不

11、限定车型,l6.05,则最大车流量为_辆/时;(2)如果限定车型,l5,则最大车流量比(1)中的最大车流量增加_辆/时(1)1 900(2)1005已知x0,y0,且2x5y20.求:(1)ulg xlg y的最大值;(2)的最小值lg xlg y有最大值1.的最小值为.6(选做题)首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为yx2200x80 000,且每处

12、理一吨二氧化碳得到可利用的化工产品价值为100元(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?最低成本为200元该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损对勾函数f(x)=ax+的图象与性质对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。当a0,b0时,f(x)=ax+b/

13、x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,f(x)=ax+b/x的图象是由直线yax与双曲线y= b/x构成,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示:a0 b0 a0 b0,b0。之后当a0,b0时,。当x0时,。即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。(四) 对勾函数的单调性yXOy=ax(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性对勾函数在定义域内是奇函数,专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁