示范教案(313概率的基本性质)(共3页).doc

上传人:飞****2 文档编号:13456844 上传时间:2022-04-29 格式:DOC 页数:3 大小:39KB
返回 下载 相关 举报
示范教案(313概率的基本性质)(共3页).doc_第1页
第1页 / 共3页
示范教案(313概率的基本性质)(共3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《示范教案(313概率的基本性质)(共3页).doc》由会员分享,可在线阅读,更多相关《示范教案(313概率的基本性质)(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上课 题:3.1.3 概率的基本性质教学目标:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:必然事件概率为1,不可能事件概率为0,因此0P(A)1;当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切

2、联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.教学方法:讲授法课时安排 1课时教学过程一、导入新课: 全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.二、新课讲解:、事件的关系与运算、提出问题 在掷骰子试验中,可以定义许多事件如:C1=出现1点,C2=出现2点,C3=出现3点,C4=出现4点,C5=出现5点,C6=出现6点,D1=出现的点数不大于1,D2=出现的点数大于3,D3=

3、出现的点数小于5,E=出现的点数小于7,F=出现的点数大于6,G=出现的点数为偶数,H=出现的点数为奇数, 类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确、讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反

4、之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.、总结:由此我们得到事件A,B的关系和运算如下:如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为BA(或AB),不可能事件记为,任何事件都包含不可能事件.如果事件A发生,则事件B一定发生,反之也成立,(若BA同时AB),我们说这两个事件相等,即A=B.如C1=D1.如果某事件发生

5、当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为AB或A+B.如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为AB或AB.如果AB为不可能事件(AB=),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.如果AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.、概率的几个基本性质、提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎

6、样计算?、活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在01之间,因而概率的取值范围也在01之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,AB发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,AB为不可能事件,AB为必然事件,则AB的频率为1,因而概率是1,由(4)可知事件B的概率是1与事

7、件A发生的概率的差.、讨论结果:(1)概率的取值范围是01之间,即0P(A)1.(2)必然事件的概率是1.如在掷骰子试验中,E=出现的点数小于7,因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F=出现的点数大于6,因此P(F)=0.(4)当事件A与事件B互斥时,AB发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(AB)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,AB为不可能事件,AB为必然事件,P(AB)=1.所以1=P(A)+P(B),P(B)=1-P(

8、A),P(A)=1-P(B).如在掷骰子试验中,事件G=出现的点数为偶数与H=出现的点数为奇数互为对立事件,因此P(G)=1-P(H).三、例题讲解:例: 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?活动:学生先思考或交流,教师及时指导提示,事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C).解:(1)因为C=AB,且A与B不会同时发生,所以事件A与事件B互斥,根据概率的

9、加法公式得P(C)=P(A)+P(B)=.(2)事件C与事件D互斥,且CD为必然事件,因此事件C与事件D是对立事件,P(D)=1-P(C)=.四、课堂练习:教材第页练习:、五、课堂小结:1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A与事件B互斥时,AB发生的概率等于A发生的概率与B发生的概率的和,从而有公式P(AB)=P(A)+P(B);对立事件是指事件A与事件B有且仅有一个发生.2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形:事件A发生B不发生;事件B发生事件A不发生,对立事件是互斥事件的特殊情形.六、课后作业:习题3.1A组5,B组1、2.预习教材.、概率的几个基本性质、事件的关系与运算3.1.3 概率的基本性质板书设计教学反思:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁