小波变换学习报告(共12页).doc

上传人:飞****2 文档编号:13442198 上传时间:2022-04-29 格式:DOC 页数:12 大小:586KB
返回 下载 相关 举报
小波变换学习报告(共12页).doc_第1页
第1页 / 共12页
小波变换学习报告(共12页).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《小波变换学习报告(共12页).doc》由会员分享,可在线阅读,更多相关《小波变换学习报告(共12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上小波分析及其应用 -大作业 题 目: 计算机图形大作业 教 学 系: 数学与统计学院 专业班级: 学生姓名: *888 一小波变换的定义给定一个基本函数,令 (1.1)式中均为常数,且。显然,是基本函数先作移位再作伸缩以后得到的。若不断地变化,我们可得到一族函数。给定平方可积的信号,即,则的小波变换(Wavelet Transform,WT)定义为 (1.2)式中和均是连续变量,因此该式又称为连续小波变换(CWT)。如无特别说明,式中及以后各式中的积分都是从到。信号的小波变换是和的函数,是时移,是尺度因子。又称为基本小波,或母小波。是母小波经移位和伸缩所产生的一族函数

2、,我们称之为小波基函数,或简称小波基。这样,(1.2)式的又可解释为信号和一族小波基的内积。母小波可以是实函数,也可以是复函数。若是实信号,也是实的,则也是实的,反之,为复函数。在(1.1)式中,的作用是确定对分析的时间位置,也即时间中心。尺度因子的作用是把基本小波作伸缩。我们在1.1节中已指出,由变成,当时,若越大,则的时域支撑范围(即时域宽度)较之变得越大,反之,当时,越小,则的宽度越窄。这样,和联合越来确定了对分析的中心位置及分析的时间宽度。这样,(1.2)式的WT可理解为用一族分析宽度不断变化的基函数对作分析,由下一节的讨论可知,这一变化正好适应了我们对信号分析时在不同频率范围所需要不

3、同的分辨率这一基本要求。(1.1)式中的因子是为了保证在不同的尺度时,始终能和母函数有着相同的能量,即 令,则,这样,上式的积分即等于。令的傅里叶变换为,的傅里叶变换为,由傅里叶变换的性质,的傅里叶变换为: (1.3)由Parsevals定理,(1.2)式可重新表为: (1.4)此式即为小波变换的频域表达式。二小波变换的特点比较(1.2)和(1.4)式对小波变换的两个定义可以看出,如果在时域是有限支撑的,那么它和作内积后将保证在时域也是有限支撑的,从而实现我们所希望的时域定位功能,也即使反映的是在附近的性质。同样,若具有带通性质,即围绕着中心频率是有限支撑的,那么和作内积后也将反映在中心频率处

4、的局部性质,从而实现好的频率定位性质。显然,这些性能正是我们所希望的。问题是如何找到这样的母小波,使其在时域和频域都是有限支撑的。若的时间中心是,时宽是,的频率中心是,带宽是,那么的时间中心仍是,但时宽变成,的频谱的频率中心变为,带宽变成。这样,的时宽带宽积仍是,与无关。这一方面说明小波变换的时频关系也受到不定原理的制约,但另一方面,也即更主要的是揭示了小波变换的一个性质,也即恒Q性质。定义 =带宽/中心频率 (1.5)为母小波的品质因数,对,其 带宽/中心频率=因此,不论为何值,始终保持了和具有性同的品质因数。恒Q性质是小波变换的一个重要性质,也是区别于其它类型的变换且被广泛应用的一个重要原

5、因。图2.1说明了和的带宽及中心频率随变化的情况。图2.1 随变化的说明;(a) ,(b) ,(c) 我们可看到小波变换在对信号分析时有如下特点:当变小时,对的时域观察范围变窄,但对在频率观察的范围变宽,且观察的中心频率向高频处移动,如图2.1c所示。反之,当变大时,对的时域观察范围变宽,频域的观察范围变窄,且分析的中心频率向低频处移动,如图2.1b所示。将时频关系结合在一起,我们可得到在不同尺度下小波变换所分析的时宽、带宽、时间中心和频率中心的关系,如图2.2所示。0图2.2 a取不同值时小波变换对信号分析的时频区间由于小波变换的恒Q性质,因此在不同尺度下,图2.2中三个时、频分析区间(即三

6、个矩形)的面积保持不变。由此我们看到,小波变换为我们提供了一个在时、频平面上可调的分析窗口。该分析窗口在高频端(图中处)的频率分辨率不好(矩形窗的频率边变长),但时域的分辨率变好(矩形的时间边变短);反之,在低频端(图中处),频率分辨率变好,而时域分辨率变差。但在不同的值下,图2.2中分析窗的面积保持不变,也即时、频分辨率可以随分析任务的需要作出调整。众所周知,信号中的高频成份往往对应时域中的快变成份,如陡峭的前沿、后沿、尖脉冲等。对这一类信号分析时则要求时域分辨率要好以适应快变成份间隔短的需要,对频域的分辨率则可以放宽,当然,时、频分析窗也应处在高频端的位置。与此相反,低频信号往往是信号中的

7、慢变成份,对这类信号分析时一般希望频率的分辨率要好,而时间的分辨率可以放宽,同时分析的中心频率也应移到低频处。显然,小波变换的特点可以自动满足这些客观实际的需要。总结上述小波变换的特点可知,当我们用较小的对信号作高频分析时,我们实际上是用高频小波对信号作细致观察,当我们用较大的对信号作低频分析时,实际上是用低频小波对信号作概貌观察。如上面所述,小波变换的这一特点即既符合对信号作实际分析时的规律,也符合人们的视觉特点。我们知道,傅里叶变换的基函数是复正弦。这一基函数在频域有着最佳的定位功能(频域的函数),但在时域所对应的范围是,完全不具备定位功能。这是FT的一个严重的缺点。人们希望用短时傅里叶变

8、换来弥补FT的不足。重写(1.1)式,即 (2.6)由于该式中只有窗函数的位移而无时间的伸缩,因此,位移量的大小不会改变复指数的频率。同理,当复指数由变成(即频率发生变化)时,这一变化也不会影响窗函数。这样,当复指数的频率变化时,STFT的基函数的包络不会改变,改变的只是该包络下的频率成份。这样,当由变化成时,对分析的中心频率改变,但分析的频率范围不变,也即带宽不变。因此,STFT不具备恒Q性质,当然也不具备随着分辨率变化而自动调节分析带宽的能力。M通道最大抽取滤波器组是将分成M个子带信号,每一个子带信号需有相同的带宽,即,其中心频率依次为, (注:若是DFT滤波器组,则中心频率在, ),且这

9、M个子带信号有着相同的时间长度。在小波变换中,我们是通过调节参数来得到不同的分析时宽和带宽,但它不需要保证在改变时使所得到的时域子信号有着相同的时宽或带宽。这是小波变换和均匀滤波器组的不同之处。可知,离散小波变换是通过“多分辨率分析”来实现的,而“多分辨率分析”最终是由两通道滤波器组来实现的。由(1.1)式,定义 (2.7)为信号的“尺度图(scalogram)”。它也是一种能量分布,但它是随位移和尺度的能量分布,而不是简单的随的能量分布,即我们在第二章至第四章所讨论的时频分布。但由于尺度间接对应频率(小对应高频,大对应低频),因此,尺度图实质上也是一种时频分布。三 连续小波变换的计算性质1时

10、移性质若的CWT是,那么的CWT是。该结论极易证明。记,则 (3.1)2 尺度转换性质如果的CWT是,令,则 (3.2)证明: ,令,则 该性质指出,当信号的时间轴按作伸缩时,其小波变换在和两个轴上同时要作相同比例的伸缩,但小波变换的波形不变。这是小波变换优点的又一体现。3 微分性质如果的CWT是,令,则 (3.3)证明: 由(3.1)式的移位性质,有 即 4 两个信号卷积的CWT,令的CWT分别是及,并令,则 (3.4)式中符号表示对变量作卷积。证明: 再由(3.1)式的移位性质,有 同理, 于是(3.4)式得证。5 两个信号和的CWT令的CWT分别是,且,则 (3.5a)同理,如果,则 (

11、3.5b)(3.5)式说明两个信号和的CWT等于各自CWT的和,也即小波变换满足叠加原理。看到WT的这一性质,估计读者马上会想到WVD中的交叉项问题。由(3.5)式看来,似乎小波变换不存在交叉项。但实际上并非如此。(1.2)式所定义的CWT是“线性”变换,即只在式中出现一次,而在(1.2)式的WVD表达式中出现了两次,即,所以,我们称以Wigner分布为代表的一类时频分布为“双线性变换”。正因为如此,是信号能量的分布。与之相对比,小波变换的结果不是能量分布。但小波变换的幅平方,即(2.7)式的尺度图则是信号能量的一种分布。将代入(2.7)式,可得: (3.6)式中分别是和的幅角。证明: 由于后

12、两项互为共轭,因此必有(3.6)式.(3.6)式表明在尺度图中同样也有交叉项存在,但该交叉项的行为和WVD中的交叉项稍有不同。WVD的交叉项位于两个自项的中间,即位于处,分别是两个自项的时频中心。由(9.3.3)式可以得出,尺度图中的交叉项出现在和同时不为零的区域,也即是真正相互交叠的区域中,这和WVD有着明显的区别。可以证明【钱,书】,同一信号的WVD和其尺度图有如下关系: (3.7)式中是母小波的WVD,该式揭示了WVD和WT之间的关系,这说明cohen类的时频分布和小波变换有着非常密切的内在联系。6 小波变换的内积定理定理9.1 设和,的小波变换分别是和,则 (3.8)式中 (3.9)为

13、的傅里叶变换。证明:由(1.4)式关于小波变换的频域定义,( 3.8)式的左边有: 假定积分 存在,再由Parseval定理,上述的推导最后为 于是定理得证。(3.8)式实际上可看作是小波变换的Parseval定理。该式又可写成更简单的形式,即 (3.10)进一步,如果令,由(9.3.8)式,有 (3.11)该式更清楚地说明,小波变换的幅平方在尺度位移平面上的加权积分等于信号在时域的总能量,因此,小波变换的幅平方可看作是信号能量时频分布的一种表示形式。(3.8)和(3.11)式中对的积分是从,这是因为我们假定总为正值。这两个式子中出现的是由于定义小波变换时在分母中出现了,而式中又要对作积分所引

14、入的。四 经典类小波4.1 Haar小波Haar小波来自于数学家Haar于1910年提出的Haar正交函数集,其定义是: (4.1)的傅里叶变换是: (4.2) Haar小波有很多好的优点,如:(1) Haar小波在时域是紧支撑的,即其非零区间为(0,1);(2) 若取,那么Haar小波不但在其整数位移处是正交的,即,而且在取不同值时也是两两正交的,即;(3) Haar波是对称的。我们知道,离统的单位抽样响应若具有对称性,则该系统具有线性相位,这对于去除相位失真是非常有利的。Haar小波是目前唯一一个既具有对称性又是有限支撑的正交小波;(4)Haar小波仅取1和1,因此计算简单。但Haar小波

15、是不连续小波,由于,因此在处只有一阶零点,这就使得Haar小波在实际的信号分析与处理中受到了限制。但由于Haar小波有上述的多个优点,因此在教科书与论文中常被用作范例来讨论。4.2 Morlet小波Morlet小波定义为 (4.3)其傅里叶变换 (4.4) 它是一个具有高斯包络的单频率复正弦函数。考虑到待分析的信号一般是实信号,所以在MATLAB中将(4.3)式改造为: (4.5)并取 。该小波不是紧支撑的,理论上讲可取。但是当,或再取更大的值时,和在时域和频域都具有很好的集中。Morlet小波不是正交的,也不是双正交的,可用于连续小波变换。但该小波是对称的,是应用较为广泛的一种小波。4.3 Mexican hat小波该小波的中文名字为“墨西哥草帽”小波,又称Marr小波。它定义为 (4.6) 式中,其傅里叶变换为 (4.7)该小波是由一高斯函数的二阶导数所得到的,它沿着中心轴旋转一周所得到的三维图形犹如一顶草帽,故由此而得名。该小波不是紧支撑的,不是正交的,也不是双正交的,但它是对称的,可用于连续小波变换。该小波在处有二阶零点。4.4 Gaussian小波高斯小波是由一基本高斯函数分别求导而得到的,定义为: , (4.8)式中定标常数是保证。该小波不是正交的,也不是双正交的,也不是紧支撑的。当取偶数时正对称,当取奇数时,反对称。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁