《高考数学填空选择压轴题试题汇编(共40页).doc》由会员分享,可在线阅读,更多相关《高考数学填空选择压轴题试题汇编(共40页).doc(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一部分 函数导数(47题)2/23第二部分 解析几何(23题)9/29第三部分 立体几何(11题)12/31第四部分 三角函数及解三角形(10题)14/32第五部分 数列(10题)15/33第六部分 概率统计(6题)17/35第七部分 向量(7题)18/36第八部分 排列组合(6题)19/37第九部分 不等式(7题)20/38第十部分 算法(2题)21/40第十一部分 交叉部分(2题)22/40第十二部分 参考答案23/40【说明】:汇编试题来源河南五年高考真题5套;郑州市2011年2012年一模二模三模试题6套;2012年河南省各地市检测试题12套;2012年全国
2、高考文科试题17套。共计40套试题.试题为每套试卷选择题最后两题,填空最后一题。第一部分 函数导数1.【12年新课标】(12)设点在曲线 上,点Q在曲线上,则的 最小值为( ) 2.【11年新课标】(12)函数的图像与函数的图像所有交点的横坐标之和等于( ) 3.【10年新课标】(11),若均不相等,且,则的取值范围是( ) 4.【09年新课标】(12)用表示三个数中的最小值。设,则的最大值为( ) 5.【11年郑州一模】12若定义在R上的偶函数,且当则函数的零点个数是( )A多于4个B4个C3个D2个6.【11年郑州二模】7.【11年郑州二模】设是R上的奇函数,且,当时,则不等式的解集为_.
3、8. 【11年郑州三模】9. 【11年郑州三模】10.【12年郑州一模】定义在上的函数满足:当时,有。若,的大小关系是( ) 11.【12年郑州二模】1.如图曲线和直线所围成的图形(阴影部分)的面积为( ) 12.【12年郑州二模】12. 已知集合定义函数。若点的外接圆圆心为D的外接圆圆心为D,且则满足条件的函数有( ) 13.【12年郑州三模】已知,实数,且,若实数是函数的一个零点,那么下列不等式中,不可能成立的是( ) 14.【12年北京】14.已知,若同时满足条件:,或;, 。则m的取值范围是_ 15.【12福建】10.函数在上有定义,若对任意,有,则称在上具有性质。设在1,3上具有性质
4、,现给出如下命题:在上的图像时连续不断的;在上具有性质;若在处取得最大值1,则,;对任意,有。其中真命题的序号是( )A B C D16. 【12福建】15.对于实数,定义运算“”:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是_17.【12年湖北】9函数在区间上的零点个数为( )A4 B5 C6 D718.【12年北京】8.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( )A.5 B.7 C.9 D.1119.【12年湖南】8已知两条直线 :y=m 和: y=(m0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至
5、右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为来( ) A B. C. D. 20.【12年江苏】13已知函数的值域为,若关于x的不等式的解集为,则实数c的值为 21.【12年江西】10如右图,已知正四棱锥所有棱长都为1,点E是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分,记截面下面部分的体积为则函数的图像大致为 ( )22.【12年辽宁】11. 设函数满足,且当 时,.又函数,则函数在上的零点个数为( ) A5 B6 C7 D823.【12年辽宁】12. 若,则下列不等式恒成立的是( ) A B C D24.【12年山东】12.设函
6、数,若的图像与图象有且仅有两个不同的公共点,则下列判断正确的是( ) CD25.【12年山东】(16)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动。当圆滚动到圆心位于(2,1)时,的坐标为_26.【12年陕西】14. 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 27.【12年上海】13已知函数的图象是折线段,其中、,函数()的图象与轴围成的图形的面积为 .28.【12天津】(14)已知函数的图象与函数的图象恰有两个交点,则实数的取值范围是 .29.【12年浙江】9设则( ) 30.【
7、12年浙江】17设aR,若x0时均有(a1)x1( x 2ax1)0,则a_31.【12年焦作一模】12定义在上的奇函数,当时,则关于的函数的所有零点之和为( )A B C D32.【12年开封二模】11. 已知函数的定义域为R,对任意都有,则( ) A. B. C. D.33.【12年开封二模】12. 设的定义域为D,若满足下面两个条件,则称为闭函数.在D内是单调函数;存在,使f(x)在a,b上的值域为a,b.如果为闭函数,那么k的取值范围是( ) A.k-1 D.34.【12年开封二模】16. 设f(x)是定义在R上的奇函数,且当时,若对任意的,不等式恒成立,则实数t的取值范围是_35.【
8、12年开封四模】11已知且函数恰有3个不同的零点,则实数a的取值范围是( )A -1,+) B-1,0) C(0,+ ) D-2,+ )36. 【12年开封一模】11.由曲线xy=1,直线y=x,y=3所围成的平面图形和面积为( ) AB2-ln3C4+ln3D4-ln337.【12年开封一模】12.已知函数,把函数的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和,则( )A210-1 B29-1 C45 D5538.【11年洛阳上期末】11已知函数f(x)是定义在R上的以4为周期的函数,”当x(1,3时,f(x) 其中t0若函数y的零点个数是5,则t的取值范围为( )A(,1) B
9、(,) C(1,) D(1,)39.【12年洛阳二模】12设函数的定义域为R,且对任意的都有当时,若在区间上关于X的方程有五个不同的实数根,则a的取值范围是( )A (1,2) B C D【12年信阳三模】11. .已知函数若方程有且只有两个不相等的实数根,则实数的取值范围为( ) 40. 【12年信阳三模】12.已知函数y=f(x)是定义在R上的奇函数,当x0时,f(x)=2x+x2,若存在正数a,b,使得当xa,b时,f(x)的值域为,则a+b=( ) A.1 B. C. D. 42.【12年信阳二模】16f(x)asin2xbcos2x,其中a,bR,ab0,若f(x)对一切xR恒成立,
10、则0 f(x)既不是奇函数也不是偶函数 f(x)的单调递增区间是k,k(kZ) 存在经过点(a,b)的直线与函数f(x)的图象不相交 以上结论正确的是_(写出所有正确结论的编号)43.【12年许昌一模】12.设函数的定义域为D,若函数I满足下列两个条件,则称在定义域D上是闭函数.在D上是单调函数;存在区间a,b,使在a, b上值域为a,b.如果函数为闭函数,则k的取值范围是( ) A.B. C.D.44.【12年许昌一模】16. 已知函数有三个零点分别是,则的取值范围是_.45.【12年六校三模】11偶函数则关于x的方程上解的个数是 ( ) Al B2 C3 D446.【12年驻马店二模】12
11、若,当时,若在区间内有两个零点,则实数的取值范围是( ) A0,) B,) C 0,) D(0,47.【11年焦作一模】11已知奇函数f(x)满足f(1)f(3)0,在区间2,0)上是减函数,在区间2,)是增函数,函数F(x),则xF(x)0( )Axx3,或0x3 Bxx3,或1x0,或0x3Cx3x1,或1x3 Dxx3,或0x1,或1x2,或20,b0)的左、右焦点,P为双曲线右支上任一点。若的最小值为8a,则该双曲线的离心率的取值范围是( )A(1, B(1,3) C(1,3 D,3)19.【12年商丘二模】12已知(ab0),M,N是椭圆的左、右顶点,P是椭圆上任意一点,且直线PM、
12、PN的斜率分别为k1,k2(k1k20),若k1k2的最小值为1,则椭圆的离心率为( ) A B C D20.【12年六校三模】12两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”已知直线相切,则a的取值范围是( )AB C-3a一或a7Da7或a321.【12年驻马店二模】11若曲线C1:2px(p0)的焦点F恰好是曲线C2:(a0,b0)的右焦点,且曲线C1与曲线C2交点的连线过点F,则曲线C2的离心率为( )
13、 A1 B1 C D22.【11年焦作一模】16已知双曲线的离心率为P,焦点为F的抛物线2px与直线yk(x)交于A、B两点,且e,则k的值为_23.【11年焦作一模】12已知点P是长方体ABCDA1B1C1D1底面ABCD内一动点,其中AA1AB1,AD,若A1P与A1C所成的角为30,那么点P在底面的轨迹为( )A圆弧 B椭圆的一部分 C双曲线的一部分 D抛物线的一部分第三部分 立体几何1.【12年新课标】(11)已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为( )(A) (B) (C) (D)2.【09年新课标】(11)一个棱锥的三视图如图,则该
14、棱锥的全面积(单位:c)为 ( )(A)48+12 (B)48+24 (C)36+12 (D)36+243.(12)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该集合体的侧视图与俯视图中,这条棱的投影分别是长为和的线段,则的最大值为 ( ) (A) (B) (C) (D)4.【12年郑州一模】5.【12年湖北】10我国古代数学名著九章算术中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式. 人们还用过一些类似的近似公式. 根据判断,下列近似公式中最精确的一个是( )A B C D6
15、.【12年辽宁】16. 已知正三棱锥,点都在半径为的球面上,若 两两相互垂直,则球心到截面的距离为 7.【12年全国大纲卷】16三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为 。8.【12年上海】14如图,与是四面体中互相垂直的棱,若,且,其中、为常数,则四面体的体积的最大值是 .9.【12年浙江】10已知矩形ABCD,AB1,BC将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,( )A存在某个位置,使得直线AC与直线BD垂直B存在某个位置,使得直线AB与直线CD垂直C存在某个位置,使得直线AD与直线BC垂直D对任意位置,三直线“AC与BD”,“AB与CD”,“AD
16、与BC”均不垂直10.【12年重庆】9、设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是( )(A) (B) (C) (D)第四部分 三角函数及解三角形1.【11年新课标】(11)设函数的最小正周期为,且,则 ( ) (A)在单调递减 (B)在单调递减 (C)在单调递增(D)在单调递增2.【11年新课标】(16)在中,则的最大值为_ 3.【10年新课标】(16)在中,D为边BC上一点,BD=DC,=120,AD=2,若的面积为,则= 4.【12年郑州二模】16. 下列说法:“”的否定是“”;函数的最小正周期是;命题“函数在处有极值,则”的否命题是真命题;是
17、上的奇函数,x0时的解析式是,则时的解析式为.其中正确的说法是. _5.【12年安徽】(15)设的内角所对的边为;则下列命题正确的是 若;则 若;则 若;则 若;则 若;则6. 【12年湖南】7. 在ABC中,AB=2,AC=3,= 1则. A. B. C. D.7.【12年陕西】9. 在中角、所对边长分别为,若,则的最小值为( )A B C D8.【12年湖南】15.函数f(x)=sin ()的导函数的部分图像如图4所示,其中,P为图像与y轴的交点,A,C为图像与x轴的两个交点,B为图像的最低点.(1)若,点P的坐标为(0,),则 ;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在A
18、BC内的概率为 .9.【11年洛阳上期末】16在ABC中,BAC45,ACB75,D是ABC平分线上的一点,且DBDC若BC,则AD_.10.【12年许昌一模】11.已知函数,其中为实数,若,对恒成立,且 ,则的单调递减区间是( )A. B.C. D.第五部分 数 列1. 【12年新课标】(16)数列满足,则的前项和为_ 2.【09年新课标】(16)等差数列前n项和为。已知+-=0,=38, 则m=_3.【12福建】14.数列的通项公式,前项和为,则 _。4.【12年上海】18设,在中,正数的个数是( )A25 B50 C75 D1005.【12年四川】12、设函数,是公差为的等差数列,则(
19、)A、 B、 C、 D、6.【12年四川】16、记为不超过实数的最大整数,例如,。设为正整数,数列满足,现有下列命题:当时,数列的前3项依次为5,3,2;对数列都存在正整数,当时总有;当时,;对某个正整数,若,则。其中的真命题有_。(写出所有真命题的编号)7.【12年开封四模】12已知数列表示不超过x的最大整数,则的值等于( )A1B2C3D48.【12年商丘二模】16数列的前n项和为,若数列的各项按如下规律排列:, ,有如下运算和结论: a24; 数列a1,a2a3,a4a5a6,a7a8a9a10,是等比数列; 数列a1,a2a3,a4a5a6,a7a8a9a10,的前n项和为; 若存在正
20、整数k,使Sk10,Sk110,则ak其中正确的结论是_(将你认为正确的结论序号都填上)9.【12年信阳三模】16.给出下列等式:;,由以上等式推出一个一般结论:对于= 。10.【12年信阳二模】12等差数列的前n项和为,已知2011(),2011(), 则等于( )A0 B2011 C4022 D2011第六部分 概率统计1.(16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307308 310 314 319 323 325 325 328 331 33
21、4 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图 甲 乙 3 1 27 7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 7 9 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 7 34 3 2 35 6 根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:_;_;2.【
22、12年广东】7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为的概率是( ) 3.【12年江西】9.样本()的平均数为,样本()的平均数为,若样本(,)的平均数,其中,则n,m的大小关系为( )A B C D不能确定4.【12年上海】17设,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则( )A B C D与的大小关系与的取值有关5.【12年重庆】15、某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).6.【12年洛阳二模】11 设,任取,则关于X的一元二
23、次方程有实根的概率为( )A B C D第七部分 向 量1.【12年郑州三模】2.【12年北京】13已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为_,的最大值为_3.【12年广东】8. .对任意两个非零的平面向量和,定义;若平面向量满足,与的夹角,且都在集合中,则( ) 4.【12天津】(7)已知ABC为等边三角形,设点P,Q满足,若,则( )(A) ()()()5.【12年开封四模】16在平面内,已知设= 6.【12年开封一模】16已知点G是ABC的重心,若A=120,=-2,则|的最小值是_7.【12年商丘二模】11已知两个非零向量a(m1,n1),b(m3,n3),且a与b
24、的夹角是钝角或直角,则mn的取值范围是( ) A(,3)B(2,6) C,3 D2,6第八部分 排列组合1.【12年安徽】(10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为( ) 或 或 或 或2.【12年湖北】13回文数是指从左到右读与从右到左读都一样的正整数如22,121,3443,94249等显然2位回文数有9个:11,22,33,993位回文数有90个:101,111,121,191,202,999则()4位回文数有 个;()位回文数有 个3.【12年湖南】16
25、.设N=2n(nN*,n2),将N个数x1,x2,,xN依次放入编号为1,2,N的N个位置,得到排列P0=x1x2xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3xN-1x2x4xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到;当2in-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第_个位置;(2)当N=2n(n8)时,x173位于P4中的第_个位置.4.【12年全
26、国大纲卷】11将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A12种 B18种 C24种 D36种5.【12年山东】(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) (A)232 (B)252 (C)472 (D)4846.【12年四川】11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A、60条 B、62条 C、71条 D、80条第九部分 不等式1.【12福建】9.若直线上存在点满足约束条件,则实数的最大值为(
27、)A B1 C D22.【12年江苏】14已知正数满足:则的取值范围是 3.【12年重庆】10、设平面点集,则所表示的平面图形的面积为( )(A) (B) (C) (D)4.【12年焦作一模】16若对于任意非零实数,不等式恒成立,则实数的取值范围_5.【12年洛阳统考】11设x,y满足条件若目标函数的最大值为2,则 的最小值为( )A25B19C13D56.【12年信阳二模】11设x,y满足约束条件,则的最大值是( ) A9 B8 C7 D67.【12年驻马店二模】16运行如图所示的程序框图,当输入m4时,输出的结果为n若变量x,y满足则目标函数z2xy,的最大值为_.第十部分 算 法1.【1
28、2年江西】14下图为某算法的程序框图,则程序运行后输出的结果是_.2.【12年陕西】10. 右图是用模拟方法估计圆周率的程序框图,表示估计结果,则图中空白框内应填入( )ABCD第十一部分 交叉部分1.【12年洛阳二模】16 给出下列命题:设向量满足的夹角为若向量的夹角为钝角,则实数t的取值范围是;已知一组正数的方差为的平均数为1设a,b,c分别为ABC的角A,B,C的对边,则方程与有公共根的充要条件是;若表示的各位上的数字之和,如,所以,记,则=11上面命题中,假命题的序号是_ (写出所有假命题的序号)2.【12年六校三模】16给出以下四个命题: 已知命题p:是真命题; 过点(-1,2)且在
29、x轴和y轴上的截距相等的直线方程是x+y-1=0; 函数在定义域内有且只有一个零点; 若直线xsin +ycos +l=0和直线垂直,则角 其中正确命题的序号为 (把你认为正确的命题序号都填上)第十二部分 参考答案第一部分 函数导数参考答案1.B 2.D 3.C 4.C 5.B 6.B 7. 8.C 9.1、4 10.B11.D 12.C 13.D14.【解析】根据,可解得。由于题目中第一个条件的限制,或成立的限制,导致在时必须是的。当时,不能做到在时,所以舍掉。因此,作为二次函数开口只能向下,故,且此时两个根为,。为保证此条件成立,需要,和大前提取交集结果为;又由于条件2:要求,0的限制,可
30、分析得出在时,恒负,因此就需要在这个范围内有得正数的可能,即应该比两根中小的那个大,当时,解得,交集为空,舍。当时,两个根同为,舍。当时,解得,综上所述【答案】15.D考点:演绎推理和函数。难度:难。分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立。解答:A中,反例:令,符合题意,但图象不连续 B中,反例:在上具有性质,在上不具有性质。 C中,在上,所以,对于任意。 D中,。 16.【】考点:演绎推理和函数。难度:难。分析:本题考查的知识点为新定义的理解,函数与方程中根的个数。解答:由题可得, 可得, 且 所以时,所以。17.考点分析:本题考察三角函数的周期性以及零点的概念.解析:,则或,又,所以共有6个解.选C.18.【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C。19.【答案】B