高考专项训练21.数列大题专项训练(共27页).doc

上传人:飞****2 文档编号:13411199 上传时间:2022-04-29 格式:DOC 页数:28 大小:689KB
返回 下载 相关 举报
高考专项训练21.数列大题专项训练(共27页).doc_第1页
第1页 / 共28页
高考专项训练21.数列大题专项训练(共27页).doc_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《高考专项训练21.数列大题专项训练(共27页).doc》由会员分享,可在线阅读,更多相关《高考专项训练21.数列大题专项训练(共27页).doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 一解答题(共30小题)1(2012上海)已知数列an、bn、cn满足(1)设cn=3n+6,an是公差为3的等差数列当b1=1时,求b2、b3的值;(2)设,求正整数k,使得对一切nN*,均有bnbk;(3)设,当b1=1时,求数列bn的通项公式2(2011重庆)设an是公比为正数的等比数列a1=2,a3=a2+4()求an的通项公式;()设bn是首项为1,公差为2的等差数列,求数列an+bn的前n项和Sn3(2011重庆)设实数数列an的前n项和Sn满足Sn+1=an+1Sn(nN*)()若a1,S2,2a2成等比数列,求S2和a3()求证:对k3有0ak4(20

2、11浙江)已知公差不为0的等差数列an的首项a1为a(aR)设数列的前n项和为Sn,且,成等比数列()求数列an的通项公式及Sn;()记An=+,Bn=+,当a2时,试比较An与Bn的大小5(2011上海)已知数列an和bn的通项公式分别为an=3n+6,bn=2n+7(nN*)将集合x|x=an,nN*x|x=bn,nN*中的元素从小到大依次排列,构成数列c1,c2,c3,cn,(1)写出c1,c2,c3,c4;(2)求证:在数列cn中,但不在数列bn中的项恰为a2,a4,a2n,;(3)求数列cn的通项公式6(2011辽宁)已知等差数列an满足a2=0,a6+a8=10(I)求数列an的通

3、项公式;(II)求数列的前n项和7(2011江西)(1)已知两个等比数列an,bn,满足a1=a(a0),b1a1=1,b2a2=2,b3a3=3,若数列an唯一,求a的值;(2)是否存在两个等比数列an,bn,使得b1a1,b2a2,b3a3b4a4成公差不 为0的等差数列?若存在,求an,bn的通项公式;若不存在,说明理由8(2011湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列bn中的b3、b4、b5(I) 求数列bn的通项公式;(II) 数列bn的前n项和为Sn,求证:数列Sn+是等比数列9(2011广东)设b0,数列an满足a1=b,an=(n

4、2)(1)求数列an的通项公式;(4)证明:对于一切正整数n,2anbn+1+110(2011安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n1(I)求数列an的通项公式;()设bn=tanantanan+1,求数列bn的前n项和Sn11(2010浙江)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0()若S5=5,求S6及a1;()求d的取值范围12(2010四川)已知等差数列an的前3项和为6,前8项和为4()求数列an的通项公式;()设bn=(4an)qn1(q0,

5、nN*),求数列bn的前n项和Sn13(2010四川)已知数列an满足a1=0,a2=2,且对任意m、nN*都有a2m1+a2n1=2am+n1+2(mn)2(1)求a3,a5;(2)设bn=a2n+1a2n1(nN*),证明:bn是等差数列;(3)设cn=(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn14(2010陕西)已知an是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列()求数列an的通项;()求数列2an的前n项和Sn15(2010宁夏)设数列满足a1=2,an+1an=322n1(1)求数列an的通项公式;(2)令bn=nan,求数列的前n项和Sn1

6、6(2010江西)正实数数列an中,a1=1,a2=5,且an2成等差数列(1)证明数列an中有无穷多项为无理数;(2)当n为何值时,an为整数,并求出使an200的所有整数项的和17(2009陕西)已知数列an满足,nN(1)令bn=an+1an,证明:bn是等比数列;(2)求an的通项公式18(2009山东)等比数列an的前n项和为Sn,已知对任意的nN*,点(n,Sn),均在函数y=bx+r(b0)且b1,b,r均为常数)的图象上(1)求r的值;(2)当b=2时,记bn=nN*求数列bn的前n项和Tn19(2009江西)数列an的通项,其前n项和为Sn,(1)求Sn;(2),求数列bn的

7、前n项和Tn20(2009辽宁)等比数列an的前n项和为sn,已知S1,S3,S2成等差数列,(1)求an的公比q;(2)求a1a3=3,求sn21(2009湖北)已知数列an是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列an的通项公式;(2)数列an和数列bn满足等式an=(nN*),求数列bn的前n项和Sn22(2009福建)等比数列an中,已知a1=2,a4=16(I)求数列an的通项公式;()若a3,a5分别为等差数列bn的第3项和第5项,试求数列bn的通项公式及前n项和Sn23(2009安徽)已知数列an的前n项和Sn=2n2+2n,数列bn的前n项和

8、Tn=2bn()求数列an与bn的通项公式;()设cn=an2bn,证明:当且仅当n3时,cn+1cn24(2009北京)设数列an的通项公式为an=pn+q(nN*,P0)数列bn定义如下:对于正整数m,bm是使得不等式anm成立的所有n中的最小值()若,求b3;()若p=2,q=1,求数列bm的前2m项和公式;()是否存在p和q,使得bm=3m+2(mN*)?如果存在,求p和q的取值范围;如果不存在,请说明理由25(2008浙江)已知数列xn的首项x1=3,通项xn=2np+np(nN*,p,q为常数),且成等差数列求:()p,q的值;()数列xn前n项和Sn的公式26(2008四川)设数

9、列an的前n项和为Sn=2an2n,()求a1,a4()证明:an+12an是等比数列;()求an的通项公式27(2008四川)在数列an中,a1=1,()求an的通项公式;()令,求数列bn的前n项和Sn;()求数列an的前n项和Tn28(2008陕西)已知数列an的首项,n=1,2,3,()证明:数列是等比数列;()求数列的前n项和Sn29(2008辽宁)在数列an,bn是各项均为正数的等比数列,设()数列cn是否为等比数列?证明你的结论;()设数列lnan,lnbn的前n项和分别为Sn,Tn若a1=2,求数列cn的前n项和30(2008辽宁)在数列an,bn中,a1=2,b1=4,且an

10、,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(1)求a2,a3,a4及b2,b3,b4,由此猜测an,bn的通项公式,并证明你的结论;(2)证明:答案与评分标准一解答题(共30小题)1(2012上海)已知数列an、bn、cn满足(1)设cn=3n+6,an是公差为3的等差数列当b1=1时,求b2、b3的值;(2)设,求正整数k,使得对一切nN*,均有bnbk;(3)设,当b1=1时,求数列bn的通项公式考点:数列递推式;数列的函数特性。专题:计算题;分类讨论。分析:(1)先根据条件得到数列bn的递推关系式,即可求出结论;(2)先根据条件得到数列bn的递推关系式;进而判断出其增

11、减性,即可求出结论;(3)先根据条件得到数列bn的递推关系式;再结合叠加法以及分类讨论分情况求出数列bn的通项公式,最后综合即可解答:解:(1)an+1an=3,bn+1bn=n+2,b1=1,b2=4,b3=8(2)an+1an=2n7,bn+1bn=,由bn+1bn0,解得n4,即b4b5b6;由bn+1bn0,解得n3,即b1b2b3b4k=4(3)an+1an=(1)n+1,bn+1bn=(1)n+1(2n+n)bnbn1=(1)n(2n1+n1)(n2)故b2b1=21+1;b3b2=(1)(22+2),bn1bn2=(1)n1(2n2+n2)bnbn1=(1)n(2n1+n1)当n

12、=2k时,以上各式相加得bnb1=(222+2n2+2n1)+12+(n2)+(n1)=+=+bn=+当n=2k1时,=+(2n+n)=+bn=点评:本题主要考察数列递推关系式在求解数列通项中的应用是对数列知识的综合考察,属于难度较高的题目2(2011重庆)设an是公比为正数的等比数列a1=2,a3=a2+4()求an的通项公式;()设bn是首项为1,公差为2的等差数列,求数列an+bn的前n项和Sn考点:等比数列的通项公式;数列的求和。专题:计算题。分析:()由an是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得an的通项公式()由bn是首项为1,公差为2

13、的等差数列 可求得bn=1+(n1)2=2n1,然后利用等比数列与等差数列的前n项和公式即可求得数列an+bn的前n项和Sn解答:解:()设an是公比为正数的等比数列设其公比为q,q0a3=a2+4,a1=22q2=2q+4 解得q=2或q=1q0q=2 an的通项公式为an=22n1=2n()bn是首项为1,公差为2的等差数列bn=1+(n1)2=2n1数列an+bn的前n项和Sn=+=2n+12+n2=2n+1+n22点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题3(2011重

14、庆)设实数数列an的前n项和Sn满足Sn+1=an+1Sn(nN*)()若a1,S2,2a2成等比数列,求S2和a3()求证:对k3有0ak考点:数列与不等式的综合;数列递推式。专题:综合题。分析:()由题意,得S22=2S2,由S2是等比中项知S2=2,由此能求出S2和a3()由题设条件知Sn+an+1=an+1Sn,Sn1,an+11,且,由此能够证明对k3有0an1解答:解:()由题意,得S22=2S2,由S2是等比中项知S20,S2=2由S2+a3=a3S2,解得()证明:因为Sn+1=a1+a2+a3+an+an+1=an+1+Sn,由题设条件知Sn+an+1=an+1Sn,Sn1,

15、an+11,且,又从而对k3,有0ak点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用4(2011浙江)已知公差不为0的等差数列an的首项a1为a(aR)设数列的前n项和为Sn,且,成等比数列()求数列an的通项公式及Sn;()记An=+,Bn=+,当a2时,试比较An与Bn的大小考点:数列与不等式的综合;数列的求和;等差数列的性质。专题:计算题;证明题。分析:()设出等差数列的公差,利用等比中项的性质,建立等式求得d,则数列的通项公式和前n项的和可得()利用()的an和Sn,代入不等式,利用裂项法和等比数列的求和公式整理An与Bn,最后对a0和a0两种情况分情况

16、进行比较解答:解:()设等差数列an的公差为d,由()2=,得(a1+d)2=a1(a1+3d),因为d0,所以d=a1=a所以an=na,Sn=()解:=()An=+=(1)=2n1a,所以=,Bn=+=(1)当n2时,2n=Cn0+Cn1+Cnnn+1,即11所以,当a0时,AnBn;当a0时,AnBn点评:本题主要考查了等差数列的性质涉及了等差数列的通项公式,求和公式以及数列的求和的方法,综合考查了基础知识的运用5(2011上海)已知数列an和bn的通项公式分别为an=3n+6,bn=2n+7(nN*)将集合x|x=an,nN*x|x=bn,nN*中的元素从小到大依次排列,构成数列c1,

17、c2,c3,cn,(1)写出c1,c2,c3,c4;(2)求证:在数列cn中,但不在数列bn中的项恰为a2,a4,a2n,;(3)求数列cn的通项公式考点:等差数列的通项公式;数列的概念及简单表示法。专题:综合题;分类讨论;转化思想。分析:(1)利用两个数列的通项公式求出前3项,按从小到大挑出4项(2)对于数列an,对n从奇数与偶数进行分类讨论,判断是否能写成2n+7的形式(3)对an中的n从从奇数与偶数进行分类讨论,对bn中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项解答:解:(1)a1=31+6=9; a2=32+6=12 a3=33+6=15b1=21+7=9 b2=22+7

18、=11 b3=23+7=13 c1=9;c2=11;c3=12;c4=13(2)解对于an=3n+6,当n为奇数时,设为n=2k+1则3n+6=2(3k+1)+7bn当n为偶数时,设n=2k则3n+6=6k1+7不属于bn在数列cn中,但不在数列bn中的项恰为a2,a4,a2n,;(3)b3k2=2(3k2)+7=a2k1b3k1=6k+5 a2k=6k+6b3k=6k+76k+36k+56k+66k+7当k=1时,依次有b1=a1=c1,b2=c2,a2=c3,b3=c4点评:本题考查利用数列的通项公式求数列的项、考查判断某项是否属于一个数列是看它是否能写出通项形式、考查分类讨论的数学数学方

19、法6(2011辽宁)已知等差数列an满足a2=0,a6+a8=10(I)求数列an的通项公式;(II)求数列的前n项和考点:等差数列的通项公式;数列的求和。专题:综合题。分析:(I)根据等差数列的通项公式化简a2=0和a6+a8=10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作,然后给两边都除以2得另一个关系式记作,后,利用an的通项公式及等比数列的前n项和的公式化简后,即可得到数列的前n项和的通项公式解答:解:(I)设等差数列an的公差为d,由已知条件可得,解得:,故数列a

20、n的通项公式为an=2n;(II)设数列的前n项和为Sn,即Sn=a1+,故S1=1,=+,当n1时,得:=a1+=1(+)=1(1)=,所以Sn=,综上,数列的前n项和Sn=点评:此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题7(2011江西)(1)已知两个等比数列an,bn,满足a1=a(a0),b1a1=1,b2a2=2,b3a3=3,若数列an唯一,求a的值;(2)是否存在两个等比数列an,bn,使得b1a1,b2a2,b3a3b4a4成公差不 为0的等差数列?若存在,求an,bn的通项公式;若不存在,说明理由考点:等比数列的性质;等比数列的通

21、项公式。专题:综合题。分析:(1)设等比数列an的公比为q,根据等比数列的通项公式,由b1a1=1,b2a2=2,b3a3=3表示出b1,b2,b3,根据b1,b2,b3成等比数列,再根据等比数列的通项公式得到等比数列an的首项与公比的关系式,把q看作未知数,根据a大于0得出根的判别式大于0,进而得到方程有两个不同的实根,又数列an唯一,得到方程必有一根为0,把q=0代入方程即可得到关于a的方程,求出方程的解即可得到a的值;(2)利用反证法进行证明,假设存在,分别设出两等比数列的公比,根据等差数列的通项公式,b1a1,b2a2,b3a3,b4a4成公差不为0的等差数列,列出关系式,化简后分别求

22、出两等比数列的首项及公比,分别求出b1a1,b2a2,b3a3,b4a4的公差为0,与已知的公差不为0矛盾,假设错误,进而得到不存在两个等比数列an,bn,使得b1a1,b2a2,b3a3b4a4成公差不 为0的等差数列解答:解:(1)设an的公比为q,a1=a(a0),b1a1=1,b2a2=2,b3a3=3,b1=1+a,b2=2+aq,b3=3+aq2,b1,b2,b3成等比数列,(2+aq)2=(1+a)(3+aq2)即aq24aq+3a1=0,a0,=4a2+4a0,方程有两个不同的实根,又数列an唯一,方程必有一根为0,将q=0代入方程得a=,a=;(2)假设存在两个等比数列an,

23、bn,使b1a1,b2a2,b3a3,b4a4成公差不为0的等差数列,设an的公比为q1,bn的公比为q2,则b2a2=b1q2a1q1,b3a3=b1q22a1q12,b4a4=b1q23a1q13,由b1a1,b2a2,b3a3,b4a4成的等差数列得:即,q2得:a1(q1q2)(q11)2=0,由a10得:q1=q2或q1=1,(i)当q1=q2时,由,得b1=a1或q1=q2=1,这时(b2a2)(b1a1)=0与公差不为0矛盾;(ii)q1=1时,由,得b1=0或q2=1,这时(b2a2)(b1a1)=0与公差不为0矛盾,综上所述,不存在两个等比数列an,bn,使得b1a1,b2a

24、2,b3a3b4a4成公差不为0的等差列点评:此题考查学生灵活运用等比数列的通项公式及等比数列的性质化简求值,会利用反证法说明命题的真假,是一道中档题8(2011湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列bn中的b3、b4、b5(I) 求数列bn的通项公式;(II) 数列bn的前n项和为Sn,求证:数列Sn+是等比数列考点:等比关系的确定;等比数列的通项公式;等比数列的前n项和。专题:证明题;综合题。分析:(I)利用成等差数列的三个正数的和等于15可设三个数分别为5d,5+d,代入等比数列中可求d,进一步可求数列bn的通项公式(II)根据(I)及等比

25、数列的前 n项和公式可求Sn,要证数列Sn+是等比数列即可解答:解:(I)设成等差数列的三个正数分别为ad,a,a+d依题意,得ad+a+a+d=15,解得a=5所以bn中的依次为7d,10,18+d依题意,有(7d)(18+d)=100,解得d=2或d=13(舍去)故bn的第3项为5,公比为2由b3=b122,即5=4b1,解得所以bn是以首项,2为公比的等比数列,通项公式为(II)数列bn的前和即,所以,因此是以为首项,公比为2的等比数列点评:本题主要考查了等差数列、等比数列及前n和公式等基础知识,同时考查基本运算能力9(2011广东)设b0,数列an满足a1=b,an=(n2)(1)求数

26、列an的通项公式;(4)证明:对于一切正整数n,2anbn+1+1考点:数列递推式;数列与不等式的综合。专题:综合题;分类讨论;转化思想。分析:(1)由题设形式可以看出,题设中给出了关于数列an的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的解答:解:(1)(n2),(n2),当b=1时,(n2),数列是以

27、为首项,以1为公差的等差数列,=1+(n1)1=n,即an=1,当b0,且b1时,(n2),即数列是以=为首项,公比为的等比数列,=,即an=,数列an的通项公式是(2)证明:当b=1时,不等式显然成立当b0,且b1时,an=,要证对于一切正整数n,2anbn+1+1,只需证2bn+1+1,即证=(bn+1+1)(bn1+bn2+b+1)=(b2n+b2n1+bn+2+bn+1)+(bn1+bn2+b+1)=bn(bn+bn1+b2+b)+(+)bn(2+2+2)=2nbn所以不等式成立,综上所述,对于一切正整数n,有2anbn+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数

28、列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧10(2011安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n1(I)求数列an的通项公式;()设bn=tanantanan+1,求数列bn的前n项和Sn考点:等比数

29、列的通项公式;数列与三角函数的综合。专题:计算题。分析:(I)根据在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,我们易得这n+2项的几何平均数为10,故Tn=10n+2,进而根据对数的运算性质我们易计算出数列an的通项公式;(II)根据(I)的结论,利用两角差的正切公式,我们易将数列bn的每一项拆成的形式,进而得到结论解答:解:(I)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,又这n+2个数的乘积计作Tn,Tn=10n+2又an=lgTn,an=lg10n+2=n+2,n1(II)bn=tanantanan+1=tan(n+2)tan(n+3)

30、=,Sn=b1+b2+bn=+=点评:本题考查的知识点是等比数列的通项公式及数列与三角函数的综合,其中根据已知求出这n+2项的几何平均数为10,是解答本题的关键11(2010浙江)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0()若S5=5,求S6及a1;()求d的取值范围考点:等差数列的前n项和。分析:(I)根据附加条件,先求得s6再求得a6分别用a1和d表示,再解关于a1和d的方程组(II)所求问题是d的范围,所以用“a1,d”法解答:解:()由题意知S6=3,a6=S6S5=8所以解得a1=7所以S6=3,a1=7;解:()因为S5S6+15

31、=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0故(4a1+9d)2=d28所以d28故d的取值范围为d2或d2点评:本题主要考查等差数列概念、求和公式通项公式等基础知识,同时考查运算求解能力及分析问题解决问题的能力12(2010四川)已知等差数列an的前3项和为6,前8项和为4()求数列an的通项公式;()设bn=(4an)qn1(q0,nN*),求数列bn的前n项和Sn考点:等差数列的通项公式;数列的求和。专题:计算题。分析:(1)设an的公差为d,根据等差数列的求和公式表示出前3项和前8项的和,求的a1和d,进而根据等差数列的通项公式求得a

32、n(2)根据(1)中的an,求得bn,进而根据错位相减法求得数列bn的前n项和Sn解答:解:(1)设an的公差为d,由已知得解得a1=3,d=1故an=3+(n1)(1)=4n;(2)由(1)的解答得,bn=nqn1,于是Sn=1q0+2q1+3q2+(n1)qn1+nqn若q1,将上式两边同乘以q,得qSn=1q1+2q2+3q3+(n1)qn+nqn+1将上面两式相减得到(q1)Sn=nqn(1+q+q2+qn1)=nqn于是Sn=若q=1,则Sn=1+2+3+n=所以,Sn=点评:本小题主要考查数列的基础知识和划归、分类整合等数学思想,以及推理论证、分析与解决问题的能力13(2010四川

33、)已知数列an满足a1=0,a2=2,且对任意m、nN*都有a2m1+a2n1=2am+n1+2(mn)2(1)求a3,a5;(2)设bn=a2n+1a2n1(nN*),证明:bn是等差数列;(3)设cn=(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn考点:数列递推式;数列的求和。专题:综合题;转化思想。分析:(1)欲求a3,a5只需令m=2,n=1赋值即可(2)以n+2代替m,然后利用配凑得到bn+1bn,和等差数列的定义即可证明(3)由(1)(2)两问的结果可以求得cn,利用乘公比错位相减求cn的前n项和Sn解答:解:(1)由题意,令m=2,n=1,可得a3=2a2a1+

34、2=6再令m=3,n=1,可得a5=2a3a1+8=20(2)当nN*时,由已知(以n+2代替m)可得a2n+3+a2n1=2a2n+1+8于是a2(n+1)+1a2(n+1)1(a2n+1a2n1)=8即bn+1bn=8所以bn是公差为8的等差数列(3)由(1)(2)解答可知bn是首项为b1=a3a1=6,公差为8的等差数列则bn=8n2,即a2n+1a2n1=8n2另由已知(令m=1)可得an=(n1)2那么an+1an=2n+1=2n+1=2n于是cn=2nqn1当q=1时,Sn=2+4+6+2n=n(n+1)当q1时,Sn=2q0+4q1+6q2+2nqn1两边同乘以q,可得qSn=2

35、q1+4q2+6q3+2nqn上述两式相减得(1q)Sn=2(1+q+q2+qn1)2nqn=22nqn=2所以Sn=2综上所述,Sn=点评:本小题是中档题,主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力同时考查了等差,等比数列的定义,通项公式,和数列求和的方法14(2010陕西)已知an是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列()求数列an的通项;()求数列2an的前n项和Sn考点:等差数列与等比数列的综合。专题:计算题。分析:(I)由题意可得a32=a1a9=a9,从而建立关于公差d的方程,解方程可求d,进而求出通项an(II)由

36、(I)可得,代入等比数列的前n项和公式可求Sn解答:解()由题设知公差d0,由a1=1,a1,a3,a9成等比数列得=,解得d=1,d=0(舍去),故an的通项an=1+(n1)1=n;()由()知2a_n=2n,由等比数列前n项和公式得Sm=2+22+23+2n=2n+12点评:本题考查了等差数列及等比数列的通项公式,等比数列的前n项和公式,属于基本公式的简单运用15(2010宁夏)设数列满足a1=2,an+1an=322n1(1)求数列an的通项公式;(2)令bn=nan,求数列的前n项和Sn考点:数列递推式;数列的求和。专题:计算题。分析:()由题意得an+1=(an+1an)+(ana

37、n1)+(a2a1)+a1=3(22n1+22n3+2)+2=22(n+1)1由此可知数列an的通项公式为an=22n1()由bn=nan=n22n1知Sn=12+223+325+n22n1,由此入手可知答案解答:解:()由已知,当n1时,an+1=(an+1an)+(anan1)+(a2a1)+a1=3(22n1+22n3+2)+2=22(n+1)1而a1=2,所以数列an的通项公式为an=22n1()由bn=nan=n22n1知Sn=12+223+325+n22n1从而22Sn=123+225+n22n+1得(122)Sn=2+23+25+22n1n22n+1即点评:本题主要考查数列累加法

38、(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力16(2010江西)正实数数列an中,a1=1,a2=5,且an2成等差数列(1)证明数列an中有无穷多项为无理数;(2)当n为何值时,an为整数,并求出使an200的所有整数项的和考点:数列的求和;等差数列的性质。专题:创新题型。分析:(1)由a1=1,a2=5且an2成等差数列,求出an2的通项公式,由通项公式分析出无理数;(2)由an的表达式讨论使an200的整数项,从而求出所有整数项的和解答:(1)证明:由已知有:an2=1+24(n1),从而,方法一:取n1=242k1,则用反证法证明这些an都是无理数假设为有理数,则an

39、必为正整数,且an24k,故an24k1an24k1,与(an24k)(an+24k)=1矛盾,所以都是无理数,即数列an中有无穷多项为无理数;(2)要使an为整数,由(an1)(an+1)=24(n1)可知:an1,an+1同为偶数,且其中一个必为3的倍数,所以有an1=6m或an+1=6m当an=6m+1时,有an2=36m2+12m+1=1+12m(3m+1)(mN)又m(3m+1)必为偶数,所以an=6m+1(mN)满足an2=1+24(n1)即(mN)时,an为整数;同理an=6m1(mN+)有an2=36m212m+1=1+12(3m1)(mN+)也满足an2=1+24(n1),即

40、(mN+)时,an为整数;显然an=6m1(mN+)和an=6m+1(mN)是数列中的不同项;所以当(mN)和(mN+)时,an为整数;由an=6m+1200(mN)有0m33,由an=6m1200(mN+)有1m33设an中满足an200的所有整数项的和为S,则S=(5+11+197)+(1+7+199)=点评:对一个正整数数能否写成另一个整数的平方的形式,是难点;对整数的奇偶性分析也是难点;故此题是中档题17(2009陕西)已知数列an满足,nN(1)令bn=an+1an,证明:bn是等比数列;(2)求an的通项公式考点:等比关系的确定;数列递推式。专题:证明题。分析:(1)先令n=1求出

41、b1,然后当n2时,求出an+1的通项代入到bn中化简可得bn是以1为首项,为公比的等比数列得证;(2)由(1)找出bn的通项公式,当n2时,利用an=a1+(a2a1)+(a3a2)+(anan1)代入并利用等比数列的前n项和的公式求出即可得到an的通项,然后n=1检验也符合,所以nN,an都成立解答:解:(1)证b1=a2a1=1,当n2时,所以bn是以1为首项,为公比的等比数列(2)解由(1)知,当n2时,an=a1+(a2a1)+(a3a2)+(anan1)=1+1+()+=,当n=1时,所以点评:考查学生会确定一个数列为等比数列,会利用数列的递推式的方法求数列的通项公式以及会利用等比数列的前n项和的公式化简求值18(2009山东)等比数列an的前n项和为Sn,已知对任意的nN*,点(n,Sn),均在函数y=bx+r(b0)且b1,b,r均为常数)的图象上(1)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁