《高考数学-数列通项公式求解方法总结(共23页).doc》由会员分享,可在线阅读,更多相关《高考数学-数列通项公式求解方法总结(共23页).doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上求数列通项公式的十种方法一、公式法例1 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。二、累加法例2 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例3 已知数列满足,求数列的通项公式。解:由得则所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式
2、。例4 已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。三、累乘法例5 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例6 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。解:因为所以用式式得则故所以由,则,又知,则,代入得。所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。四、待定系数法例7 已知数
3、列满足,求数列的通项公式。解:设将代入式,得,等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例8 已知数列满足,求数列的通项公式。解:设将代入式,得整理得。令,则,代入式得由及式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例9 已知数列满足,求数列的通项公式。解:设 将代入式,得,则等式两边消去,得
4、,解方程组,则,代入式,得 由及式,得则,故数列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。五、对数变换法例10 已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设将式代入式,得,两边消去并整理,得,则,故代入式,得 由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。六、迭代法例11 已知数列满足,求数列的通项公式
5、。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。七、数学归纳法例12 已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。八、换元法例13 已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化
6、为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。九、不动点法例14 已知数列满足,求数列的通项公式。解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。例15 已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以,所以数列是以为首项,以为公差的等差数列,
7、则,故。评注:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。十、特征根法例16 已知数列满足,求数列的通项公式。解:的相应特征方程为,解之求特征根是,所以。由初始值,得方程组求得从而。评注:本题解题的关键是先求出特征方程的根。再由初始值确定出,从而可得数列的通项公式。求数列通项公式的十种方法一、公式法例1 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接
8、利用等差数列的通项公式求出,进而求出数列的通项公式。二、累加法例2 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例3 已知数列满足,求数列的通项公式。解:由得则所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例5 已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。三、累乘法例5 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的
9、关键是把递推关系转化为,进而求出,即得数列的通项公式。例6 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。解:因为所以用式式得则故所以由,则,又知,则,代入得。所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。四、待定系数法例7 已知数列满足,求数列的通项公式。解:设将代入式,得,等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例8 已知数
10、列满足,求数列的通项公式。解:设将代入式,得整理得。令,则,代入式得由及式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例9 已知数列满足,求数列的通项公式。解:设 将代入式,得,则等式两边消去,得,解方程组,则,代入式,得 由及式,得则,故数列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。五、对数变换法例10 已知数列满足,求数列的通项公式。解:因为,所
11、以。在式两边取常用对数得设将式代入式,得,两边消去并整理,得,则,故代入式,得 由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。六、迭代法例11 已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。七、数学归纳法例12 已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时
12、,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。八、换元法例13 已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。九、不动点法例14 已知数列满足,求数列的通项公式。解:令,得,则是函数的两
13、个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。例15 已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以,所以数列是以为首项,以为公差的等差数列,则,故。评注:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。十、特征根法例16 已知数列满足,求数列的通项公式。解:的相应特征方程为,解之求特征根是,所以。由初始值,得方程组求得从而。评注:本题解题的关键是先求出特征方程的根。再由初始值确定出,从而可得数列的通项公式。专心-专注-专业