《高中数学总复习教学案03:平面向量(共19页).doc》由会员分享,可在线阅读,更多相关《高中数学总复习教学案03:平面向量(共19页).doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高中数学总复习教学案第3单元 平面向量本章知识结构向 量线性运算向量及其基本概念向量的数量积平面向量基本定理坐标表示向量的应用本章的重点难点聚焦(1)本章的重点有向量的概念、运算及坐标表示,向量共线的条件极其坐标表示,向量的数量积运算的定义、运算律及其坐标表示,向量垂直的条件极其坐标表示(2)本章的难点是向量的概念,向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等;本章学习中应当着重注意的问题对于本章内容的学习,要注意体会数形结合的数学思想方法的应用本章高考分析及预测在高考试题中,主要考查有关的基础知识,突出向量的工具作用平面向量的考查要求:第一,主要考
2、查平面向量的性质和运算法则,以及基本运算技能,考查学生掌握平面向量的和、差、数乘和数量积的运算法则,理解其直观的几何意义,并能正确地进行运算;第二,考察向量的坐标表示,及坐标形势下的向量的线性运算;第三,经常和函数、曲线、数列等知识结合,考察综合运用知识能力在近几年的高考中,每年都有两道题目其中小题以填空题或选择题形式出现,考查了向量的性质和运算法则,数乘、数量积、共线问题与轨迹问题大题则以向量形式为条件,综合考查了函数、三角、数列、曲线等问题31 向量的概念及线性运算新课标要求1.理解向量的概念,掌握向量的几何表示;2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量
3、或出与某一已知向量相等的向量;3会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量,会作两个向量的差向量5掌握向量加法的交换律和结合律,并会用它们进行向量计算;6了解相反向量的概念;8掌握向量的数乘定义,理解向量的数乘的几何意义;9掌握向量的数乘的运算律;10理解两个向量共线的充要条件,能够运用共线条件判定两向量是否平行.重点难点聚焦重点:1向量概念、相等向量概念、向量几何表示;2用向量加法的三角形法则和平行四边形法则,作两个向量的和向量与差向量;3掌握实数与向量的积的定义、运算律、理解向量共线的充要条件难点:1向量概念的理解;2向量的加法和减法的定义的理解;3对向量共线的充要条
4、件的理解 高考分析及预策本节主要考点:向量的加法与减法;向量的数乘的定义;向量的数乘的运算律;向量共线的条件;有关向量平行及三点共线问题高考预策:注意数形结合思想的应用注意向量共线条件的应用题组设计再现型题组 1 已知的对角线和相交于,且,用向量,分别表示向量2 对任意向量,下列命题正确的是( )A. 若满足,且与同向,则B. 若都是单位向量,则3 设是非零向量,是非零实数,则下列结论正确的是( )A. 与的方向相反 B. C. 与的方向相同 D. 巩固型题组 4在中,若点满足,则=( )A. B. C. D. 5 已知,则( )A. 三点共线 B. 三点共线C. 三点共线 D. 三点共线6已
5、知向量,是两个非两向量,在下列的四个条件中,能使,共线的条件是( ) 且 存在相异实数使 (其中实数满足) 已知梯形,其中 A. B. C. D. 提高型题组 7如图对于平行四边形,点是的中点,点在上,且,求证:三点共线8若向量终点共线,则存在实数,且,使得反之,也成立反馈型题组 9平面向量、共线的充要条件是( )A,方向相同 B. ,两向量中至少有一个为零向量 C. D. 存在不全为零的实数,10在中,已知是边上一点,若,则等于( )A B. C. D. 11化简以下各式结果为零向量的个数是( );A B. C. D. 12设,求的大值和最小值13是平面上一定点,是平面上不共线三点,动点满足
6、 ,则点的轨迹一定通过的( ) A外心 B.垂心 C.内心 D. 重心14已知中,点在上,且,则= 3.2向量的正交分解及坐标表示新课标要求1了解平面向量基本定理;2掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法;3理解平面向量的坐标的概念,掌握平面向量的坐标运算;4会根据向量的坐标,判断向量是否共线;5掌握线段的定比分点坐标公式及线段的中点坐标公式;重点难点聚焦重点:1平面内任一向量都可以用两个不共线非零向量表示;2平面向量的坐标运算;3段的定比分点和中点坐标公式的应用难点:1平面向量基本定理的理解; 2向量的坐标表示的理解及运算的准确性;
7、高考分析及预策本节考点:1 平面向量基本定理;2 向量的正交分解;3 平面向量的坐标表示极坐标运算;4 两向量共线的条件的坐标表示;5 利用共线求定比分点坐标题组设计再现型题组 1下列说法正确的是( ) 一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; 一个平面内有无数多对不共线的向量可作为表示该平面所有向量的基底; 零向量不可作为基底中的向量 A. B. C. D.2已知,求和,使3已知点,是判断向量和的位置关系巩固型题组 4在中,已知是中线上一点,且,则点的坐标为( ) A. B. C. D.5,且,则的值为( )A. B. C. D.6已知,当为何值时,与平行?平行时,它们是
8、同向还是反向?提高型题组 7设向量,若表示向量的有向线段首尾相接能构成四边形,则向量为( ) A. B. C. D.8如图,已知,求线段中点和三等分点的坐标反馈型题组 9若向量与相等,已知,则的值为 10若,则与平行的单位向量是 11已知向量,且三点共线,则= 12已知点及求:为何值时,在第二象限?四边形能否构成平行四边形?若能,求出相应的值;若不能,请说明理由13已知向量点,若点满足,求与的值14已知,直线,点是直线上的一点,若,求点的轨迹方程3.3数量积及其应用新课标要求1掌握平面向量的数量积及其几何意义;2掌握平面向量数量积的重要性质及运算律;3了解用平面向量的数量积可以处理有关长度、角
9、度和垂直的问题;4掌握向量垂直的条件重点难点聚焦重点:1平面向量的数量积定义;2平面向量数量积及运算规律;3平面向量数量积的坐标表示难点:1平面向量数量积的定义及运算律的理解和平面向量数量积的应用;2平面向量数量积的坐标表示的综合运用高考分析及预策本节的主要考点:1. 两个向量的夹角;2. 平面向量的数量积的性质;3. 向量数量积的运算律;4. 用向量的坐标表示两个向量垂直的条件;5. 向量的长度、距离和夹角公式题组设计再现型题组 1设是任意的非零平面向量,且它们相互不共线,下列命题: 不与垂直 其中正确的是( )A. B. C. D.2为何值时,与垂直?3已知, 求与的夹角; 求; 若,求的
10、面积 巩固型题组 4若向量与的夹角为,则向量的模为( )A. B. C. D.5已知,试判断的形状,并给出证明6已知为的三个内角的对边,向量,若,且则角= 提高型题组 7设两个向量满足:的夹角为,若向量与向量的夹角为钝角,求实数的范围8已知向量且 求及; 若的最小值是,求的值反馈型题组 9为锐角三角形的充要条件是( ) A B C D 10如图,分别是四边形的所在边的中点,若,则四边形是( ) A平行四边形,但不是矩形也不是菱形 B矩形 C菱形 D正方形11设是两个非零向量,是在的方向上的投影,而是在的方向上的投影,若与的夹角为钝角,则( ) A B C D12若,则与的夹角为 ;= 13在中
11、,若且,则的形状是( )A等边三角形 B直角三角形 C等腰非等边三角形 D三边均不相等的三角形14已知向量当时,求的值;求函数的值域第3章 平面向量45分钟单元综合检测题一、 选择题1已知是平面上的三个点,直线上有一点,满足,则=( )A B. C. D. 2设,则=( )A B. C. D. 3已知向量,若,则等于( )A B. C. D. 4已知两点,点为坐标平面内的动点,满足,则动点的轨迹方程为( )A B. C. D. 5在中,的面积,则与夹角的取值范围是( )A B. C. D. 6已知与为互相垂直的单位向量,且与的夹角为锐角,则实数的取值范围是( )A B. C. D. 二、 填空
12、题7若三点共线,则= 8设向量其中,则的最大值是 9设是平面直角坐标系内轴、轴正方向上的单位向量,且,则面积的值等于 10已知向量与的夹角为,则= 三、 解答题11设为圆上两点,为坐标原点(不共线)求证:与垂直当且时,求的值12已知为坐标原点,求点在第一象限或第三象限的充要条件;求证:当时,不论为何实数,三点都共线31 向量的概念及线性运算(解答部分)再现型题组 【提示或答案】如图 是的相反向量,是的相反向量,(或)() 【基础知识聚焦】相反向量的概念;向量加法的几何表示;向量减法的几何表示 【提示或答案】B 【基础知识聚焦】向量是既有大小又有方向的量,不能用“” 或“” 连接;向量加法的三角
13、形法则的应用;单位向量的概念3. 【提示或答案】C 【基础知识聚焦】实数与向量的积的意义; 向量共线的条件巩固型题组 4.【解法一】 【解法二】过作交于点则 【点评】解法二利用了共线向量的性质,使过程得到了简化解题过程中应注意条件的使用,它表明了点的位置【变式与拓展】在中,已知是边上一点,若,则等于( )A B. C. D. 5. 解:三点共线【点评】判断三点共线往往借助于两个共点向量共线6 解:由且,得,则,则; 存在相异实数使,不妨设,则,则; 有可能是,所以不能判断; 不一定是梯形的两底,有可能是梯形的两腰提高型题组7. 解:设 则; 三点共线8. 解:共线 ,使 令,则,使 反之,若存
14、在实数,且,使得 则 共线【变式与拓展】平面直角坐标系中,为坐标原点,已知,若点满足,其中,且,则点的轨迹方程为( )A. B. C. D. 课堂小结本节课重点是向量的加减法运算的几何表示,实数与向量的乘积的意义,向量共线的条件,在解题过程中应注意使用数形结合的方法 反馈型题组9D 10A 11D12提示:利用向量加法的三角形法则,三角形三边之间的关系,13提示:(如图)D.1413.2向量的正交分解及坐标表示(解答部分)再现型题组 1【提示或答案】D 【基础知识聚焦】本题考查的是基底的概念以及构成基底的条件 注意:零向量不可作为基底中的向量2【提示或答案】待定系数法解: 【基础知识聚焦】本题
15、考查的是平面向量基本定理的坐标表示3【提示或答案】已知点,是判断向量和的位置关系解: , 【基础知识聚焦】本题考查的是向量共线的条件的坐标表示巩固型题组 4【解法一】 【解法二】 是中线 点是的重心 , 【点评】本题考查的是向量线性运算的坐标表示,解法二利用了重心坐标公式,使问题得到简化,可见数形结合魅力和善于观察的重要性5【解法一】 ,使,即 【解法二】 且 【点评】本题考查了向量共线的条件的坐标表示解法已从看出了,使运算得到简化6【提示或答案】时,与平行,且方向相反提高型题组 7【提示或答案】表示向量的有向线段首尾相接能构成四边形【点评】本题考查的是向量加法的几何表示,通过几何表示找出能构
16、成四边形的条件,又考查了向量加法的坐标表示8【提示或答案】 设,则 即 点的坐标为同样可求得点坐标为,点坐标为 【变式与拓展】已知,点满足,求点的坐标课堂小结本节课重点是平面向量基本定理,向量线性运算的坐标表示,向量共线的条件的坐标表示,以及利用向量共线证明三点共线,求定比分点的坐标等,解题过程中应注意使用数形结合的方法 反馈型题组 9 10 1112时,在第二象限;不能构成四边形 不论为何值都不可能和平行13 ,14解:设点, 则 3.3数量积及其应用(解答部分)再现型题组 1【提示或答案】D 【基础知识聚焦】向量数量积的运算律,向量垂直的条件,向量减法的几何表示的应用2【提示或答案】 时,
17、与垂直【基础知识聚焦】向量垂直的条件的坐标表示3【提示或答案】; 【基础知识聚焦】向量数量积的定义,求模的方法,求面积公式巩固型题组 4【提示或答案】解: 【点评】本题考查了数量积定义的变式,还可以利用数量积定义求夹角【变式与拓展】已知,求与的夹角5【提示或答案】解: 为直角三角形【点评】本题考查了数量积的应用【变式与拓展】反馈型题组96【提示或答案】 解: 又 【点评】本题以向量共线垂直的坐标表示为载体,考察了正弦定理和两角和的正弦公式这也是高考重要的考察方式提高型题组 7【提示或答案】解: 且向量与向量的夹角为钝角 8【提示或答案】, 课堂小结本节课重点数量积的定义、运算律、坐标表示、向量垂直的条件及其坐标表示,以及以数量积为载体,考查和本学科其他知识的总和反馈型题组 9D 10B 11C 12; 13A14;第3章 平面向量45分钟单元综合检测题1C 2C 3C 4B 5D 6D7 ; 8 ; 9 ; 1011证明:设 则 与垂直解: 12点在第一象限的充要条件为; 点在第三象限的充要条件为 不论为何实数, 不论为何实数,三点都共线专心-专注-专业