《高中文科数学立体几何知识点大题(共8页).doc》由会员分享,可在线阅读,更多相关《高中文科数学立体几何知识点大题(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高考立体几何中直线、平面之间的位置关系知识点总结(文科)一平行问题 (一) 线线平行:方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角)方法二:1线面平行线线平行方法三:2面面平行线线平行方法四:3线面垂直 线线平行 若,则。(二) 线面平行:方法一:4线线平行线面平行方法二:5面面平行线面平行(三) 面面平行:6方法一:线线平行面面平行方法二:7线面平行面面平行方法三:8线面垂直面面平行二垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线
2、互相垂直。)方法二:9线面垂直线线垂直(二)线面垂直:10方法一:线线垂直线面垂直方法二:11面面垂直线面垂直(面) 面面垂直: 方法一:12线面垂直面面垂直三、夹角问题:异面直线所成的角:(一) 范围:(二)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(计算结果可能是其补角)线面角:直线PA与平面所成角为,如下图求法:就是放到三角形中解三角形四、距离问题:点到面的距离求法1、 直接求,2、等体积法(换顶点)1、一个几何体的三视图如图所示,则这个几何体的体积为( )ABCD2、设是两条不同的直线,是两个不同的平面,则( )A若,则 B若,则 C.若,则 D
3、若,则3、如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为 4、某几何体的三视图如图所示,则该几何体的体积为( ) A5BCD 5、某空间几何体的三视图如图所示,则该几何体的体积为A B C D6、一个几何体的三视图如图所示,则这个几何体的直观图是 7、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A B C D8、某三棱锥的三视图如图所示,则该三棱锥的体积为(A) (B) (C) (D)1、(2017新课标文数)(12分)如图,在四棱锥P-ABCD中,AB/CD,且(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,且四棱锥P-ABCD
4、的体积为,求该四棱锥的侧面积.2、(2017新课标文)(12分)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若的面积为,求四棱锥的体积. 3、(2017新课标文数)(12分)如图,四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比 4、(2017北京文)(本小题14分)如图,在三棱锥PABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点()求证:PABD;()求证:平面BDE平面
5、PAC;()当PA平面BDE时,求三棱锥EBCD的体积5、(2017山东文)(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E平面ABCD.()证明:平面B1CD1;()设M是OD的中点,证明:平面A1EM平面B1CD1. 6、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD求证:(1)EF平面ABC;(2)ADAC根据企业发展战略的要求,有计划地对人力、资源进行合理配置,通过对企业中员工的招聘、培训、使用、考核、评价、激励、调整等一系列过程,调动员工地积极性,发挥员工地潜能,为企业创造价值,确保企业战略目标的实现。读书是一种感悟人生的艺术读杜甫的诗使人感悟人生的辛酸,读李白的诗使人领悟官场的腐败,读鲁迅的文章使人认清社会的黑暗,读巴金的文章使人感到未来的希望每一本书都是一个朋友,教会我们如何去看待人生读书是人生的一门最不缺少的功课,阅读书籍,感悟人生,助我们走好人生的每一步专心-专注-专业