《中考《圆》有关的证明和计算(共16页).doc》由会员分享,可在线阅读,更多相关《中考《圆》有关的证明和计算(共16页).doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上(一 对 一)辅导专题讲解备课时间:授课时间:年级:初三学生姓名:授课老师:课题: 圆的证明与计算教学目标对所学过的与几何有关的性质、定理要熟记,并通过多做题达到熟能生巧重点会进行圆的有关计算与证明难点对一些解题方法的理解与运用教学内容圆的证明与计算专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。圆的有关证明 一、圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明弧相等、线段相等、圆
2、心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:求线段长(或面积);求线段比;求角度的三角函数值(实质还是求线段比)。知识点一:判定切线的方法:(1)若切点明确,则“连半径,证垂直”。常见手法有:全等转化;平行
3、转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:直线所垂直的是圆的半径(过圆上一点);直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:方法一:若直线l过O上某一点A,证明l是O的切线,只需连OA,证明OAl就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在ABC中,AB=AC,以AB为直径的O交BC于D,交AC于E,B为切点的切线交OD延长线
4、于F.求证:EF与O相切.例2 如图,AD是BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与O相切.证明一:作直径AE,连结EC. AD是BAC的平分线, DAB=DAC. PA=PD, 2=1+DAC. 2=B+DAB, 1=B. 又B=E, 1=E AE是O的直径, ACEC,E+EAC=900. 1+EAC=900. 即OAPA.PA与O相切.证明二:延长AD交O于E,连结OA,OE. AD是BAC的平分线, BE=CE, OEBC. E+BDE=900. OA=OE, E=1. PA=PD, PAD=PDA. 又PDA=BDE, 1+PAD=900 即OAPA. PA与
5、O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是O的直径,O交BC于D,DMAC于M求证:DM与O相切.例4 如图,已知:AB是O的直径,点C在O上,且CAB=300,BD=OB,D在AB的延长线上.求证:DC是O的切线例5 如图,AB是O的直径,CDAB,且OA2=ODOP.求证:PC是O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与CFG的外接圆相切.分析:此题图上没有画出CFG的外接圆,但CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CEOC即
6、可得解.证明:取FG中点O,连结OC. ABCD是正方形, BCCD,CFG是Rt O是FG的中点, O是RtCFG的外心. OC=OG, 3=G, ADBC, G=4. AD=CD,DE=DE, ADE=CDE=450, ADECDE(SAS) 4=1,1=3. 2+3=900, 1+2=900. 即CEOC. CE与CFG的外接圆相切方法二:若直线l与O没有已知的公共点,又要证明l是O的切线,只需作OAl,A为垂足,证明OA是O的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题)例1:如图,AB=AC,D为BC中点,D与AB切于E点.求证:AC与D相切.分析:说明:证明一是通
7、过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例2: 已知:如图,AC,BD与O切于A、B,且ACBD,若COD=900.求证:CD是O的切线.证明一:连结OA,OB,作OECD,E为垂足. AC,BD与O相切, ACOA,BDOB. ACBD, 1+2+3+4=1800.O COD=900, 2+3=900,1+4=900. 4+5=900. 1=5. RtAOCRtBDO. . OA=OB, . 又CAO=COD=900, AOCODC, 1=2. 又OAAC,OECD, OE=OA. E点在O上. CD是O的切线.证明二:连结O
8、A,OB,作OECD于E,延长DO交CA延长线于F.AC,BD与O相切,ACOA,BDOB.ACBD,F=BDO.又OA=OB,AOFBOD(AAS)OF=OD.COD=900,CF=CD,1=2.又OAAC,OECD,OE=OA.E点在O上.CD是O的切线.证明三:连结AO并延长,作OECD于E,取CD中点F,连结OF.AC与O相切,ACAO.ACBD,AOBD.BD与O相切于B,AO的延长线必经过点B.AB是O的直径.ACBD,OA=OB,CF=DF,OFAC,1=COF.COD=900,CF=DF,.2=COF.1=2.OAAC,OECD,OE=OA.E点在O上.CD是O的切线说明:证明
9、一是利用相似三角形证明1=2,证明二是利用等腰三角形三线合一证明1=2.证明三是利用梯形的性质证明1=2,这种方法必需先证明A、O、B三点共线.课后练习:(1)如图,AB是O的直径,BCAB,ADOC交O于D点,求证:CD为O的切线;(2)如图,以RtABC的直角边AB为直径作O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是O的切线. (3)如图,以等腰ABC的一腰为直径作O,交底边BC于D,交另一腰于F,若DEAC于E(或E为CF中点),求证:DE是O的切线.(4)如图,AB是O的直径,AE平分BAF,交O于点E,过点E作直线EDAF,交AF的延长线于点D,交AB的延长线于点C,
10、求证:CD是O的切线.知识点二:与圆有关的计算计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1) 构造思想:如:构建矩形转化线段;构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);射影定理:所谓射影,就是正投影。 其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条
11、直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。 由三角形相似的性质:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式RtABC中,BAC=90,AD是斜边BC上的高,则有射影定理如下::(1)(AD)2;=BDDC, (2)(AB)2;=BDBC , (3)(AC)2;=CDBC 。 等积式 (4)ABXAC=BCXAD(可用面积来证明)构造垂径定理模型:弦长一半、弦心距、半径;构造勾股定理模型(已知线段长度);构造三角函数(已知有角度的情况);找不到,找相似 (2)方程思想:设出未知数表示关键线段,通过线段之
12、间的关系,特别是发现其中的相等关系建立方程,解决问题。(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。典型基本图型:图形1:如图1:AB是O的直径,点E、C是O上的两点,基本结论有:(1)在“AC平分BAE”;“ADCD”;“DC是O的切线”三个论断中,知二推一。(2)如图2、3,DE等于弓形BCE的高;DC=AE的弦心距OF(或弓形BCE的半弦EF)。(3)如图(4):若CKAB于K,则:CK=CD;BK=DE;CK=BE=DC;AE+AB=2BK=2AD;ADCACBA
13、C2=ADAB(4)在(1)中的条件、中任选两个条件,当BGCD于E时(如图5),则:DE=GB;DC=CG;AD+BG=AB;ADBG=DC2 图形2:如图:RtABC中,ACB=90。点O是AC上一点,以OC为半径作O交AC于点E,基本结论有:(1)在“BO平分CBA”;“BODE”;“AB是O的切线”;“BD=BC”。四个论断中,知一推三。(2)G是BCD的内心; ;BCOCDEBODE=COCE=CE2;(3)在图(1)中的线段BC、CE、AE、AD中,知二求四。(4)如图(3),若BC=CE,则:=tanADE;BC:AC:AB=3:4:5 ;(在、中知一推二)设BE、CD交于点H,
14、,则BH=2EH图形3:如图:RtABC中,ABC=90,以AB为直径作O交AC于D,基本结论有:如右图:(1)DE切OE是BC的中点; (2)若DE切O,则:DE=BE=CE; D、O、B、E四点共圆CED=2ACDCA=4BE2, 图形特殊化:在(1)的条件下如图1:DEABABC、CDE是等腰直角三角形;如图2:若DE的延长线交AB的延长线于点F,若AB=BF,则:;图形4:如图,ABC中,AB=AC,以AB为直径作O,交BC于点D,交AC于点F,基本结论有:(1)DEACDE切O;(2)在DEAC或DE切O下,有:DFC是等腰三角形;EF=EC;D是 的中点。与基本图形1的结论重合。连
15、AD,产生母子三角形。图形5:以直角梯形ABCD的直腰为直径的圆切斜腰于, 基本结论有:(1)如图1:AD+BCCD; COD=AEB=90; OD平分ADC(或OC平分BCD);(注:在、及“CD是O的切线”四个论断中,知一推三)ADBC2=R2;(2)如图2,连AE、CO,则有:COAE,COAE=2R2(与基本图形2重合)(3)如图3,若EFAB于F,交AC于G,则:EG=FG.图形6:如图:直线PRO的半径OB于E,PQ切O于Q,BQ交直线PQ于R。基本结论有:(1)PQ=PR (PQR是等腰三角形);(2)在“PROB”、“PQ切O”、“PQ=PR”中,知二推一(3)2PRRE=BR
16、RQ=BE2R=AB2图形7:如图,ABC内接于O,I为ABC的内心。基本结论有:(1)如图1,BD=CD=ID;DI2DEDA;AIB=90+ACB;(2)如图2,若BAC=60,则:BD+CE=BC.图形8:已知,AB是O的直径,C是 中点,CDAB于D。BG交CD、AC于E、F。基本结论有:(1)CD=BG;BE=EF=CE;GF=2DE(反之,由CD=BG或BE=EF可得:C是 中点)(2)OE=AF,OEAC;ODEAGF(3)BEBG=BDBA(4) 若D是OB的中点,则:CEF是等边三角形; 范例讲解:例题1:ABP中,ABP=90,以AB为直径作O交AP于C点,弧=,过C作AF
17、的垂线,垂足为M,MC的延长线交BP于D.(1)求证:CD为O的切线;(2)连BF交AP于E,若BE=6,EF=2,求的值。例题2:直角梯形ABCD中,BCD=90,AB=AD+BC,AB为直径的圆交BC于E,连OC、BD交于F.求证:CD为O的切线若,求的值例题3:如图,AB为直径,PB为切线,点C在O上,ACOP。(1)求证:PC为O的切线。(2)过D点作DEAB,E为垂足,连AD交BC于G,CG=3,DE=4,求的值。例题4(2009调考):如图,已知ABC中,以边BC为直径的O与边AB交于点D,点E为 的中点,AF为ABC的角平分线,且AFEC。(1)求证:AC与O相切;(2)若AC6
18、,BC8,求EC的长家庭练习:1如图,RtABC,以AB为直径作O交AC于点D, ,过D作AE的垂线,F为垂足.(1)求证:DF为O的切线;(2)若DF=3,O的半径为5,求的值.2如图,AB为O的直径,C、D为O上的两点, ,过D作直线BC的垂线交直线AB于点E,F为垂足.(1)求证:EF为O的切线;(2)若AC=6,BD=5,求的值.3如图,AB为O的直径,半径OCAB,D为AB延长线上一点,过D作O的切线,E为切点,连结CE交AB于点F.(1)求证:DE=DF;(2)连结AE,若OF=1,BF=3,求的值.4如图,RtABC中,C=90,BD平分ABC,以AB上一点O为圆心过B、D两点作
19、O,O交AB于点一点E,EFAC于点F.(1)求证:O与AC相切;(2)若EF=3,BC=4,求的值.5如图,等腰ABC中,AB=AC,以AB为直径作O交BC于点D,DEAC于E.(1)求证:DE为O的切线;(2)若BC=,AE=1,求的值. 6如图,BD为O的直径,A为 的中点,AD交BC于点E,F为BC延长线上一点,且FD=FE.(1)求证:DF为O的切线;(2)若AE=2,DE=4,BDF的面积为,求的值.7、如图,AB是O的直径,M是线段OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且ECF=E(1)求证:CF是O的切线;(2)设O的半径为1,且
20、AC=CE,求的长8、如图,AB是O的直径,BCAB,过点C作O的切线CE,点D是CE延长线上一点,连结AD,且AD+BC=CD.(1)求证:AD是O的切线;(2)设OE交AC于F,若OF=3,EF=2,求线段BC的长.9、如图,ABC中,AB=BC,以AB为直径的O交AC于点D,且CD=BD.(1)求证:BC是O的切线;(2)已知点M、N分别是AD、CD的中点,BM延长线交O于E,EFAC,分别交BD、BN的延长线于H、F,若DH=2,求EF的长.10、如图,AB是半O上的直径,E是的中点,OE交弦BC于点D,过点C作交AD的平行线交OE的延长线于点F. ADO=B.(1)求证:CF为O的O切线;(2)求sinBAD 的值.11、如图,ABC中,ABAC,以AC为直径的O与AB相交于点E,点F是BE的中点(1)求证:DF是O的切线(2)若AE14,BC12,求BF的长专心-专注-专业