《2022年八级数学上学期期中试卷新人教版10.pdf》由会员分享,可在线阅读,更多相关《2022年八级数学上学期期中试卷新人教版10.pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 2015-2016 学年海南省海口十四中八年级(上)期中数学试卷一、选择题1 4 的平方根是()A2 B2 C2 D16 2下列说法中,正确的是()A = 4B 32的算术平方根是3 C1 的立方根是 1 D是 7 的一个平方根3在下列实数中,无理数是()AB3.14 C D4若 m=,则 m的范围是()A1m 2 B2m 3 C3m 4 D4m 5 5下列计算正确的是()A2a5a5=2 Ba2?a3=a5Ca10a2=a5 D( a2)3=a56已知 x+y=6,xy=1,则 x2y2等于()A2 B3 C4 D6 7下列选项中,可以用来证明命题“若a21,则 a1”是假命题的反例是(
2、)Aa=2 Ba=1 Ca=1 Da=2 8若 2x?()=6x3y,则括号内应填的代数式是()A3xy B 3xy C 3x2y D3y 9下列因式分解正确的是()Ax2+9=(x+3)2 Ba2+2a+4=(a+2)2Ca34a2=a2(a4) D14x2=(1+4x)(14)10如果单项式x4aby2与 x3ya+b是同类项,那么这两个单项式的积是()Ax6y4B x3y2Cx3y2D x6y411若( x+3)( x+n)=x2+mx15,则 m等于()A2 B2 C5 D5 12如图, ABC ADE ,B=80 ,C=30 ,DAC=35 ,则EAC的度数为()精品资料 - - -
3、 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 17 页 - - - - - - - - - - 2 A40 B35 C30 D2513如图, AB=AC ,根据“ SAS ”判定ABD ACE ,还需添加的条件是()ABD=CE BAE=AD CBO=CO D以上都不对14如图,在折纸活动中,小明制作了一张ABC纸片,点D、E分别是边 AB 、AC上,将 ABC沿着DE折叠压平, A与 A重合,若 A=75 ,则1+2=()A150B210C105D75二、填空题15计算: 3a3b2?8a2b2= 16a26
4、a+9=(a)217如图, 1=2,由 SAS判定 ABD ACD ,则需添加的条件18如图, ABF DCE ,点 B,E,F,C在同一直线上,已知A=D, B=C,若 BF=5,EF=3,则 CF= 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 17 页 - - - - - - - - - - 3 三、解答题19根据下表回答下列问题:x 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 x2784.00 789.61 795.24 800.89 8
5、06.56 812.25 817.96 823.69 829.44 (1)795.24 的平方根是,;(2)表中与最接近的数是;(3)在哪两个数之间?20计算题(1)( 1)0(2)( 2a2b)2?(6ab)( 3b2)(3)( 2x1)( 3x+2) 6x(x2)(4)( 3xy)2( 3x+2y)( 3x2y)21把下列多项式分解因式(1)6x2y+12xy;(2)a2+4b(a+b);(3)x325x;(4)x34x2+4x22先化简,后求值: (x2y)2+(x2y)( x+2y) 2x(2xy)+2x ,其中 x=1,y=123已知:如图,ABCD ,AB=CD 求证: ADBC
6、24如图,已知E是 AB边的中点, AC与 ED相交于点 F,且 F 是 AC 、DE的中点求证:(1)BE=CD ;(2)BE CD 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 17 页 - - - - - - - - - - 4 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 17 页 - - - - - - - - - - 5 2015-2016 学年海南省海口十四中八年级(上)期中
7、数学试卷参考答案与试题解析一、选择题14 的平方根是()A2 B2 C2 D16 【考点】平方根【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x,使得 x2=a,则 x 就是 a 的一个平方根【解答】解:(2 )2=4,4 的平方根是 2故选: A【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题2下列说法中,正确的是()A = 4 B 32的算术平方根是3 C1 的立方根是 1 D是 7的一个平方根【考点】立方根;平方根;算术平方根【分析】根据立方根、平方根及算术平方根的定义逐项作出判断即可【解答】解: A、=4,故本选项错误;B、32=9,根据负数没有平方根,
8、故本选项错误;C、1 的立方根是1,故本选项错误;D、是 7 的一个立方根,故本选项正确故选 D【点评】本题考查了立方根、平方根及算术平方根的定义及求法,属于基础题,较简单3在下列实数中,无理数是()AB3.14 C D精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 17 页 - - - - - - - - - - 6 【考点】无理数【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3 大类: 类,开方开不尽的数,无限不循环的小数,根据这3 类就可以确定无理数的个数从而得
9、到答案【解答】解:根据判断物无理数的3 类方法,可以直接得知:是开方开不尽的数,是无理数故选 C【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻4若 m=,则 m的范围是()A1m 2 B2m 3 C3m 4 D4m 5 【考点】估算无理数的大小【分析】先估计的整数部分和小数部分,然后即可判断3 的近似值【解答】解:56,53363,即 2m 3故选 B【点评】此题主要考查了无理数的估算,一个无理数和一个有理数组成的无理数找范围时,应先找到带根号的数的范围现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法5下列计算正
10、确的是()A2a5a5=2 Ba2?a3=a5Ca10a2=a5 D( a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案【解答】解: A、2a5a5=a5,故本选项错误;B、a2?a3=a5,故本选项正确;C、a10a2=a8,故本选项错误;D、(a2)3=a6,故本选项错误故选 B精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 17 页 - - - - - - - - -
11、- 7 【点评】此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识解题要注意细心6已知 x+y=6, xy=1,则 x2y2等于()A2 B3 C4 D6 【考点】平方差公式【专题】计算题;整式【分析】原式利用平方差公式变形,将已知等式代入计算即可求出值【解答】解:x+y=6,xy=1,原式 =(x+y)( xy)=6,故选 D 【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键7下列选项中,可以用来证明命题“若a2 1,则 a1”是假命题的反例是()Aa=2 Ba=1 Ca=1 Da=2 【考点】反证法【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一
12、个命题是假命题【解答】解:用来证明命题“若a2 1,则 a1”是假命题的反例可以是:a=2,( 2)21,但是 a=21, A正确;故选: A【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法8若 2x?()=6x3y,则括号内应填的代数式是()A3xy B 3xy C 3x2y D 3y 【考点】单项式乘单项式【分析】设空白部分的代数式为M ,则 M= 6x3y2x,根据单项式除单项式的运算法则,即可得出答案【解答】解:设空白部分的代数式为M ,则 M= 6x3y2x=3x2y故选 C精品资料 - - - 欢迎下载 - - -
13、 - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 17 页 - - - - - - - - - - 8 【点评】本题考查了单项式乘单项式的知识,属于基础题,掌握运算法则是关键9下列因式分解正确的是()Ax2+9=(x+3)2 Ba2+2a+4=(a+2)2Ca34a2=a2(a4) D14x2=(1+4x)(14)【考点】因式分解- 运用公式法;因式分解- 提公因式法【专题】计算题;因式分解【分析】原式各项分解得到结果,即可做出判断【解答】解: A、原式不能分解,错误;B、原式不能分解,错误;C、原式 =a2(a4),正确;D、原式 =
14、(1+2x)( 12x),错误,故选 C 【点评】此题考查了因式分解运用公式法与提公因式法,熟练掌握因式分解的方法是解本题的关键10如果单项式x4aby2与 x3ya+b是同类项,那么这两个单项式的积是()Ax6y4B x3y2Cx3y2D x6y4【考点】单项式乘单项式;同类项【分析】首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b 的方程组,然后求得 a、b 的值,即可写出两个单项式,从而求出这两个单项式的积【解答】解:由同类项的定义,得,解得:,原单项式为:x3y2与 x3y2,其积是 x6y4故选 D【点评】本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则,
15、要准确把握法则同类项相乘系数相乘,指数相加是解题的关键11若( x+3)( x+n)=x2+mx15,则 m等于()精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 17 页 - - - - - - - - - - 9 A2 B2 C5 D5 【考点】多项式乘多项式【专题】计算题【分析】根据多项式乘多项式的法则,将x+3 的每一项与x+n 的每一项分别相乘,再把其积相加即可【解答】解:(x+3)( x+n)=x2+(3+n)x+3n,3n=15,n=5,m=3+ ( 5)=2故选 A【点评】此题
16、考查了多项式乘多项式法则,要注意:不要漏项,漏字母,有同类项的合并同类项12如图, ABC ADE ,B=80 ,C=30 ,DAC=35 ,则EAC的度数为()A40 B35 C30 D25【考点】全等三角形的性质【分析】 根据三角形的内角和定理列式求出BAC ,再根据全等三角形对应角相等可得DAE= BAC ,然后根据 EAC= DAE DAC代入数据进行计算即可得解【解答】解: B=80 ,C=30 ,BAC= 1808030=70,ABC ADE ,DAE= BAC=70 ,EAC= DAE DAC ,=7035,=35故选 B【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准
17、确识图是解题的关键精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 17 页 - - - - - - - - - - 10 13如图, AB=AC ,根据“ SAS ”判定ABD ACE ,还需添加的条件是()ABD=CE BAE=AD CBO=CO D以上都不对【考点】全等三角形的判定【分析】 根据题意知, 在 ABD与 ACE中,A=A,AB=AC ,所以由三角形判定定理SAS可以推知,只需添加一对应边相等即可【解答】解:如图,在ABD与 ACE中, A=A,AB=AC ,添加 AD=AE
18、时,可以根据SAS判定 ABD ACD ,故选 B【点评】本题考查了全等三角形的判定本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有: SSS 、SAS 、ASA 、AAS 、 HL注意: AAA 、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角14如图,在折纸活动中,小明制作了一张ABC纸片,点D、E分别是边 AB 、AC上,将 ABC沿着DE折叠压平, A与 A重合,若 A=75 ,则1+2=()A150B210C105D75【考点】三角形内角和定理;翻折变换(折叠问题)【分析】先根据图形翻折变化的性质得出ADE
19、ADE , AED= AED , ADE= ADE ,再根据三角形内角和定理求出AED+ ADE及AED+ADE 的度数, 然后根据平角的性质即可求出答案精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 17 页 - - - - - - - - - - 11 【解答】解: ADE 是 ABC翻折变换而成,AED= AED , ADE= ADE , A=A=75,AED+ ADE= AED+ADE=180 75=105,1+2=360 2105=150故选 A【点评】本题考查的是图形翻折变换的性
20、质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等二、填空题15计算: 3a3b2?8a2b2= 24a5b4【考点】单项式乘单项式【分析】根据单项式乘单项式:系数乘系数,同底的幂相乘,可得答案【解答】解:3a3b2?8a2b2=24a5b4,故答案为: 24a5b4【点评】本题考查了单项式乘单项式,熟记法则并根据法则计算是解题关键16a26a+9=(a3 )2【考点】配方法的应用【专题】推理填空题【分析】配方法的理论依据是公式a22ab+b2=(ab)2,据此判断即可【解答】解: a26a+9 =a223a+32=(a3)2故答案为: 3【点评
21、】此题主要考查了配方法的应用,要熟练掌握,解答此题的关键是要明确:配方法的理论依据是公式 a22ab+b2=(ab)217如图, 1=2,由 SAS判定 ABD ACD ,则需添加的条件AB=AC 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 17 页 - - - - - - - - - - 12 【考点】全等三角形的判定【专题】常规题型【分析】由于1=2,AD=AD ,根据“ SAS ”判断三角形全等的条件可需添加AB=AC 【解答】解:1=2,而 AD=AD ,当 AB=AC时,可根据
22、SAS判定 ABD ACD 故答案为 AB=AC 【点评】本题考查了全等三角形的判定:全等三角形的5 种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边18如图, ABF DCE ,点 B,E,F,C在同一直线上,已知A=D, B=C,若 BF=5,EF=3,则 CF= 2 【考点】全等三角形的性质【分析】先根据全等三角形的对应边相等,得出BF=CE=5 ,再根据 EF=3,得出 CF的长【解答】解:ABF DCE ,点 B,
23、E,F,C在同一直线上,A=D, B=C,BF=CE=5 ,又EF=3,CF=5 3=2,故答案为: 2精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 17 页 - - - - - - - - - - 13 【点评】本题主要考查了全等三角形的性质,解题时注意全等三角形的对应边相等三、解答题19根据下表回答下列问题:x 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 x2784.00 789.61 795.24 800.89 806.56 812.25
24、 817.96 823.69 829.44 (1)795.24 的平方根是28.2 ,28.7 ;(2)表中与最接近的数是28.3 ;(3)在哪两个数之间?【考点】估算无理数的大小;平方根;算术平方根【专题】图表型【分析】( 1)找到平方等于795.24 的数,平方等于823.7 的正数即可;(2)先找到与800 最接近的数,进而找到平方等于这个数的正数即可;(3)先看 810 在表中的哪两个数之间,进而找到这两个数的算术平方根即可【解答】解:(1)( 28.2 )2=795.24 ,28.72=823.7 ;795.24 的平方根是 28.2 , 28.7 故答案为: 28.2 ,28.7
25、;(2)与 800 最接近的数为800.89 ,28.32=800.89 ;表中与最接近的数是28.3 故答案为 28.3 ;(3) 810 在 806.56 和 812.25 之间, 28.42=806.56 ;28.52=812.25 ,在 28.4 与 28.5 之间【点评】考查平方根及算术平方根的相关计算;掌握一个正数的算术平方根有1 个,平方根有2 个是解决本题的易错点精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 17 页 - - - - - - - - - - 14 20计算题
26、(1)( 1)0(2)( 2a2b)2?(6ab)( 3b2)(3)( 2x1)( 3x+2) 6x(x2)(4)( 3xy)2( 3x+2y)( 3x2y)【考点】整式的混合运算;实数的运算【分析】( 1)根据算术平方根,零指数幂,立方根求出每一部分的值,再求出即可;(2)先算乘方,再算乘除即可;(3)先算乘法,再合并同类项即可;(4)先算乘法,再合并同类项即可【解答】解:(1)原式 =521 =2;(2)原式 =4a4b2?6ab( 3b2)=8a5b;(3)原式 =6x2+4x3x2 =6x2+x2;(4)原式 =9x26xy+y29x2+4y2=6xy+5y2【点评】本题考查了算术平方
27、根,立方根,零指数幂,整式的混合运算的应用,主要考查学生的计算能力和化简能力21( 2015 秋?海南校级期中)把下列多项式分解因式(1)6x2y+12xy;(2)a2+4b(a+b);(3)x325x;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 14 页,共 17 页 - - - - - - - - - - 15 (4)x34x2+4x【考点】提公因式法与公式法的综合运用【分析】( 1)直接提公因式6xy 即可;(2)首先利用单项式乘以多项式计算出4b(a+b),再利用完全平方公式进行分解即可;(3
28、)首先提公因式x,再利用平方差进行二次分解即可;(4)首先提公因式x,再利用完全平方进行二次分解即可【解答】解:(1)原式 =6xy(x+2);(2)原式 =a2+4ba+4b2=(a+2b)2;(3)原式 =x( x225)=x(x+5)( x5);(4)原式 =x( x24x+4)=x(x2)2【点评】 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解22先化简,后求值: (x2y)2+(x2y)( x+2y) 2x(2xy)+2x ,其中 x=1,y=1【考点】整式的混合运算化简求值【分析
29、】先根据整式的乘法法则算乘法,再合并同类项,最后代入求出即可【解答】解: (x 2y)2+(x2y)( x+2y) 2x(2xy)+2x =x24xy+4y2+x24y24x2+2xy+2x =2x22xy+2x ,当 x=1,y=1 时,原式 =2【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键23已知:如图,ABCD ,AB=CD 求证: ADBC 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 15 页,共 17 页 - - - - - - - - - -
30、 16 【考点】全等三角形的判定与性质;平行线的判定与性质【专题】证明题【分析】根据两直线平行,内错角相等求出ABD= BDC ,再证明 ABD和 CDB全等,然后根据全等三角形对应角相等得出ADB= CBD ,进一步得出AD BC 【解答】证明:ABCD ABD= BDC ,在ABD和CDB中,ABD CDB (SAS ),ADB= CBD ,AD BC 【点评】本题主要考查了三角形全等的判定和性质;平行线的性质与判定,找准内错角是解决问题的关键24如图,已知E是 AB边的中点, AC与 ED相交于点 F,且 F 是 AC 、DE的中点求证:(1)BE=CD ;(2)BE CD 【考点】全等
31、三角形的判定与性质【专题】证明题【分析】( 1)由条件证明AEF CDF即可得到 AE=CD=BE ;(2)由( 1)证得 AEF CDF可得到 A=ACD ,可证得BE CD 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 16 页,共 17 页 - - - - - - - - - - 17 【解答】证明:(1)F 是 AC 、DE的中点,AF=FC ,EF=FD ,在AEF和CDF中,AEF CDF (SAS ),BE=CD ;(2)由( 1)得 AEF CDF ,A=ACD ,BE CD 【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法是解题关键,判定三角形全等的方法有SSS 、SAS 、ASA 、AAS 、HL精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 17 页,共 17 页 - - - - - - - - - -