《初三数学一元二次方程公式法和因式分解法(共10页).doc》由会员分享,可在线阅读,更多相关《初三数学一元二次方程公式法和因式分解法(共10页).doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第6次课:一元二次方程公式法和因式分解法一、考点、热点回顾学习要求:1、学会一元二次方程求根公式的推导2、理解公式法,会用公式法解简单的数字系数的一元二次方程。3、经历一元二次方程的求根公式的探索过程,体会公式法和配方法的内在联系。4、能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。5、会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程。6、会根据题目的特点灵活的选择各种方法解一元二次方程。知识要点:1、复习用配方法接一元二次方程的步骤,推导出一元二次方程的求根公式:对于一元二次方程其中,由配方法有,(1)当时,得;(2)
2、当时,一元二次方程无实数解。2、公式法的定义:利用求根公式接一元二次方程的方法叫做公式法。3、运用求根公式求一元二次方程的根的一般步骤:(1)必须把一元二次方程化成一般式,以明确a、b、c的值;(2)再计算的值:当时,方程有实数解,其解为:;当时,方程无实数解。4、分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法。5、分解因式法的理论依据是:若,则或6、用分解因式法解一元二次方程的一般步骤:将方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为
3、零,得到两个一元一次方程;解这两个一元一次方程,他们的解就是一元一次方程的解。二、典型例题例1、推导求根公式:()例2、利用公式解方程:(1) (2) (3) (4)例3、已知a,b,c均为实数,且b1(c3)20,解方程例4、你能找到适当的x的值使得多项式A=4x2+2x1与B=3x22相等吗?例5、一元二次方程(m1)x23m2x(m23m4)0有一根为零,求m的值及另一根1、用公式法解方程3x2+4=12x,下列代入公式正确的是 ( )A.x1、2= B.x1、2=C.x1、2= D.x1、2=2、方程x2+3x=14的解是 ( )A.x=B.x= C.x= D.x=3、下列各数中,是方
4、程x2(1+)x+=0的解的有 ( )1+ 1 1 A.0个B.1个C.2个D.3个5、若代数式x26x5的值等于12,那么x的值为( )A1或5B7或1C1或5D7或16、关于x的方程3x22(3m1)x2m15有一个根为2,则m的值等于( )A2BC2D7、当x为何值时,代数式2x27x1与4x1的值相等?9、用公式法解下列各方程(1)x2+6x+9=7 (2)(3) (4) (5) (6)(7) (8) (9) (10) (11) (12)例1、(1)方程的根是_ (2)方程的根是_例2、 用分解因式法解下列方程(1) (2)(3) (4) (5) (6)(7) (8)(x1)24(x1
5、)210例3、2是方程x2+bx1=0的一个根,则b=_,另一个根是_.例4、已知a25ab+6b2=0,则等于 ( )例5、解关于x的方程:(a2b2)x2+4abxa2b2例6、x为何值时,等式一、 填空题1、用因式分解法解方程9=x2-2x+1(1)移项得 ;(2)方程左边化为两个数的平方差,右边为0得 ;(3)将方程左边分解成两个一次因式之积得 ;(4)分别解这两个一次方程得x1 = , x2= 。2、(1)方程t(t3)28的解为_(2)方程(2x1)23(2x1)0的解为_3、(1)用因式分解法解方程5(x+3)-2x(x+3)=0,可把其化为两个一元一次方程 和 求解。(2)方程
6、x216=0,可将方程左边因式分解得方程_,则有两个一元一次方程_或_,分别解得:x1=_,x2=_.4、如果方程x2-3x+c=0有一个根为1,那么c= ,该方程的另一根为 , 该方程可化为(x -1)(x )=05、已知x27xy+12y2=0,那么x与y的关系是_.6、小英、小华一起分苹果,小华说:“我分得苹果数是你的3倍。”小英说:“如果将我的苹果数平方恰好等于你所得的苹果数。”则小英、小华分得的苹果个数分别是 。二、选择题1、方程3x2=1的解为( )A.B.C.D.2、2x(5x4)=0的解是( )A.x1=2,x2=B.x1=0,x2= C.x1=0,x2=D.x1=,x2=3、
7、下列方程中适合用因式分解法解的是( )A.x2+x+1=0B.2x23x+5=0C.x2+(1+)x+=0D.x2+6x+7=04、若代数式x2+5x+6与x+1的值相等,则x的值为( )A.x1=1,x2=5B.x1=6,x2=1C.x1=2,x2=3D.x=15、已知y=6x25x+1,若y0,则x的取值情况是( )A.x且x1B.x C.xD.x且x6、方程2x(x+3)=5(x+3)的根是( )A.x= B.x=3或x= C.x=3 D.x=或x=37、用因式分解法解方程,下列方法中正确的是A.(2x2)(3x4)=0 22x=0或3x4=0B.(x+3)(x1)=1 x+3=0或x1
8、=1C.(x2)(x3)=23 x2=2或x3=3D.x(x+2)=0 x+2=08、方程ax(xb)+(bx)=0的根是A.x1=b,x2=aB.x1=b,x2= C.x1=a,x2=D.x1=a2,x2=b29、若一元二次方程(m2)x2+3(m2+15)x+m24=0的常数项是0,则m为( )A.2B.2C.2 D.10三、解下列关于x的方程(1)x212x0; (2)4x210;(3)(x1)(x3)12; (4)x24x210;(5)3x22x10; (6)10x2x30;(7)4(3x+1)2-9=0 (8) 5(2x-1)=(1-2x)(x+3)三、课后练习1、方程(x5)26的
9、两个根是( )Ax1x25 Bx1x25Cx15,x25Dx15,x25 2、利用求根公式解一元二次方程时,首先要把方程化为_,确定_的值,当_时,把a,b,c的值代入公式,x1,2=_求得方程的解.3、当x为何值时,代数式2x27x1与x219的值互为相反数?4、用公式法解下列方程:(1) (2)(3) (4) (5) (6)一、选择题1、已知方程4x2-3x=0,下列说法正确的是( )A.只有一个根x= B.只有一个根x=0C.有两个根x1=0,x2= D.有两个根x1=0,x2=- 2、如果(x-1)(x+2)=0,那么以下结论正确的是( )A.x=1或x=-2 B.必须x=1C.x=2
10、或x=-1 D.必须x=1且x=-23、若方程(x-2)(3x+1)=0,则3x+1的值为( )A. 7 B. 2 C. 0 D. 7 或04、方程5x(x3)3(x3)解为( )Ax1,x23 Bx Cx1,x23Dx1,x235、方程(y5)(y2)1的根为( )Ay15,y22By5Cy2D以上答案都不对二、用因式分解法解下列方程: (1)t(2t1)3(2t1); (2)y27y60; (3)y2152y (4)(2x1)(x1)1 四、课后反馈表1、本次课学生总体满意度打分(满分100分)_ _ 。2、学生对课程内容的满意度( )A.非常满意 B.比较满意 C.一般 D.比较不满意 E.非常不满意3、学生对授课教师的满意度( )A.非常满意 B.比较满意 C.一般 D.比较不满意 E.非常不满意4、学生对授课场地的满意度( )A.非常满意 B.比较满意 C.一般 D.比较不满意 E.非常不满意5、学生对授课教师的上课的总体精神状态( )A.非常满意 B.比较满意 C.一般 D.比较不满意 E.非常不满意6、您对本课程的意见和建议:_ _ _ _ _ 。 家长(学生)签字: 201 年 月 日专心-专注-专业