《2013年高考数学一轮复习-第二篇-函数与基本初等函数Ⅰ第7讲-函数图象教案-理-新人教版(共9页).doc》由会员分享,可在线阅读,更多相关《2013年高考数学一轮复习-第二篇-函数与基本初等函数Ⅰ第7讲-函数图象教案-理-新人教版(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第7讲函数图象【2013年高考会这样考】1考查函数图象的识辨2考查函数图象的变换3利用函数图象研究函数性质或求两函数的图象的交点个数【复习指导】函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻基础梳理1函数图象的变换(1)平移变换水平平移:yf(xa)(a0)的图象,可由yf(x)的图象向左()或向右()平移a个单位而得到竖直平移:yf(x)b(b0)的图象,可由yf(x)的图象向上()或向下()平移b
2、个单位而得到(2)对称变换yf(x)与yf(x)的图象关于y轴对称yf(x)与yf(x)的图象关于x轴对称yf(x)与yf(x)的图象关于原点对称由对称变换可利用yf(x)的图象得到y|f(x)|与yf(|x|)的图象作出yf(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y|f(x)|的图象;作出yf(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得yf(|x|)的图象(3)伸缩变换yaf(x)(a0)的图象,可将yf(x)图象上每点的纵坐标伸(a1时)或缩(a1时)到原来的a倍,横坐标不变yf(ax)(a0)的图象,可将yf(x
3、)的图象上每点的横坐标伸(a1时)或缩(a1时)到原来的倍,纵坐标不变(4)翻折变换作为yf(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y|f(x)|的图象;作为yf(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得yf(|x|)的图象2等价变换例如:作出函数y的图象,可对解析式等价变形yx2y21(y0),可看出函数的图象为半圆此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图3描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变
4、化趋势);(4)描点连线,画出函数的图象 一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系 三种途径明确函数图象形状和位置的方法大致有以下三种途径(1)图象变换:平移变换、伸缩变换、对称变换(2)函数解析式的等价变换(3
5、)研究函数的性质双基自测1(人教A版教材习题改编)为了得到函数ylg的图象,只需把函数ylg x的图象上所有的点()A向左平移3个单位长度,再向上平移1个单位长度B向右平移3个单位长度,再向上平移1个单位长度C向左平移3个单位长度,再向下平移1个单位长度D向右平移3个单位长度,再向下平移1个单位长度解析ylglg(x3)1可由ylg x的图象向左平移3个单位长度,向下平移1个单位长度而得到答案C2(2011安徽)若点(a,b)在ylg x图象上,a1,则下列点也在此图象上的是()A. B(10a,1b)C. D(a2,2b)解析本题主要考查对数运算法则及对数函数图象,属于简单题当xa2时,yl
6、g a22lg a2b,所以点(a2,2b)在函数ylg x图象上答案D3函数y1的图象是()解析将y的图象向右平移1个单位,再向上平移一个单位,即可得到函数y1的图象答案B4(2011陕西)函数yx的图象是()解析该题考查幂函数的图象与性质,解决此类问题首先是考虑函数的性质,尤其是奇偶性和单调性,再与函数yx比较即可由(x)x知函数是奇函数同时由当0x1时,xx,当x1时,xx,知只有B选项符合答案B5已知图中的图象对应的函数为yf(x),则图的图象对应的函数为()Ayf(|x|) By|f(x)| Cyf(|x|) Dyf(|x|)解析yf(|x|)答案C考向一作函数图象【例1】分别画出下
7、列函数的图象:(1)y|lg x|;(2)y2x2;(3)yx22|x|1;(4)y.审题视点 根据函数性质通过平移,对称等变换作出函数图象解(1)y图象如图.(2)将y2x的图象向左平移2个单位图象如图.(3)y.图象如图.(4)因y1,先作出y的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y的图象,如图. (1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如yx的函数;(2)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程【训练1】 作出下列函数的图象:(1)y2x11;(2)ysin|x|;(3
8、)y|log2(x1)|.解(1)y2x11的图象可由y2x的图象向左平移1个单位,得y2x1的图象,再向下平移一个单位得到y2x11的图象,如图所示(2)当x0时,ysin|x|与ysin x的图象完全相同,又ysin|x|为偶函数,其图象关于y轴对称,如图所示(3)首先作出ylog2x的图象c1,然后将c1向左平移1个单位,得到ylog2(x1)的图象c2,再把c2在x轴下方的图象翻折到x轴上方,即为所求图象c3:y|log2(x1)|.如图所示(实线部分)考向二函数图象的识辨【例2】函数f(x)1log2x与g(x)21x在同一直角坐标系下的图象大致是()审题视点 在同一个坐标系中判断两
9、个函数的图象,可根据函数图象上的特征点以及函数的单调性来判断解析f(x)1log2x的图象由函数f(x)log2x的图象向上平移一个单位而得到,所以函数图象经过(1,1)点,且为单调增函数,显然,A项中单调递增的函数经过点(1,0),而不是(1,1),故不满足;函数g(x)21x2x,其图象经过(0,2)点,且为单调减函数,B项中单调递减的函数与y轴的交点坐标为(0,1),故不满足;D项中两个函数都是单调递增的,故也不满足综上所述,排除A,B,D.故选C.答案C 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判
10、断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复利用上述方法,排除、筛选错误与正确的选项【训练2】 (2010山东)函数y2xx2的图象大致是()解析当x0时,2xx2有两根x2,4;当x0时,根据图象法易得到y2x与yx2有一个交点,则y2xx2在R上有3个零点,故排除B、C;当x时,2x0.而x2,故y2xx20,故选A.答案A考向三函数图象的应用【例3】已知函数f(x)|x24x3|.(1)求函数f(x)的单调区间,并指出其增减性;(2)求集合Mm|使方程f(x)m有四个不相等的实根审题视点 作出函数图象,由图象观察解f(x)作出图象如图
11、所示(1)递增区间为1,2和3,),递减区间为(,1和2,3(2)由图象可知,yf(x)与y m图象,有四个不同的交点,则0m1,集合Mm|0m1 (1)从图象的左右分布,分析函数的定义域;从图象的上下分布,分析函数的值域;从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等(2)利用函数的图象可解决方程和不等式的求解问题,比如判断方程是否有解,有多少个解?数形结合是常用的思想方法【训练3】 (2010湖北)若直线yxb与曲线y3有公共点,则b的取值范围是()A1,12 B12,12C12,3 D1,3解析在同一坐标系下画
12、出曲线y3(注:该曲线是以点C(2,3)为圆心、2为半径的圆不在直线y3上方的部分)与直线yx的图象,平移该直线,结合图形分析可知,当直线沿y轴正方向平移到点(0,3)的过程中的任何位置相应的直线与曲线y3都有公共点;注意到与yx平行且过点(0,3)的直线的方程是yx3;当直线yxb与以点C(2,3)为圆心、2为半径的圆相切时(圆不在直线y3上方的部分),有2,b12.结合图形可知,满足题意的只有C选项答案C难点突破5高考中函数图象的考查题型涉及函数图象的知识点在高考中的考查形式主要有三种类型:一、由解析式选配图象解决时需要从定义域、值域、奇偶性、单调性等方面综合考查,有时也可以根据特殊情况(如特殊点、特殊位置)进行分析【示例】 (2011山东)函数y2sin x的图象大致是()二、图象平移问题一般地,平移按“左加右减,上正下负”进行函数式的变换【示例】 (2011郑州模拟)若函数f(x)kaxax(a0且a1)在(,)上既是奇函数又是增函数,则g(x)loga(xk)的图象是()三、图象对称问题【示例】 (2011厦门质检)函数ylog2|x|的图象大致是()专心-专注-专业