《中考一元二次方程应用题试题及答案.docx》由会员分享,可在线阅读,更多相关《中考一元二次方程应用题试题及答案.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上中考一元二次方程应用题经典题型汇总一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解:设这两个月的平均增长率是x.,则根据题意,得200(120%)(1+x)2193.6,即(1+x)21.21,解这个方程,得x10.1,x22.1(舍去).答这两个月的平均增长率是10%.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(35010a)件,但物价局限定每件商品的利
2、润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a21)(35010a)400,整理,得a256a+7750,解这个方程,得a125,a231.因为21(1+20%)25.2,所以a2=31不合题意,舍去.所以35010a3501025100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、动态几何问题例9如图4所示,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时
3、出发,几秒钟后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为C90,所以AB10(cm).(1)设xs后,可使PCQ的面积为8cm2,所以 APxcm,PC(6x)cm,CQ2xcm.则根据题意,得(6x)2x8.整理,得x26x+80,解这个方程,得x12,x24.所以P、Q同时出发,2s或4s后可使PCQ的面积为8cm2.(2)设点P出发x秒后,PCQ的面积等于ABC面积的一半.则根据题意,得(6x)2x68.整理,得x26x+120.由于此方程没有实数根,所以不存在使
4、PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程速度时间.四、平分几何图形的周长与面积问题例14如图7,在等腰梯形ABCD中,ABDC5,AD4,BC10.点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分?若存在,求此时BE的长;若不存在,请说明理由.图7KG解(1)由已知条
5、件得,梯形周长为12,高4,面积为28.过点F作FGBC于G,过点A作AKBC于K.则可得,FG4,所以SBEFBEFGx2+x(7x10).(2)存在.由(1)得x2+x14,解这个方程,得x17,x25(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE7.(3)不存在.假设存在,显然有SBEFS多边形AFECD 12,即(BE+BF)(AF+AD+DC)12.则有x2+x,整理,得3x224x+700,此时的求根公式中的b24ac5768400,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分.说明求解本题时应注意
6、:一是要能正确确定x的取值范围;二是在求得x25时,并不属于7x10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.五、航海问题图5例11如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇
7、时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DFBC.因为ABBC,D为AC的中点,所以DFAB100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DEx海里,AB+BE2x海里,EFAB+BC(AB+BE)CF(3002x)海里.在RtDEF中,根据勾股定理可得方程x21002+(3002x)2,整理,得3x21200x+0.解这个方程,得x1200118.4,x2200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.专心-专注-专业