2017年山东省济宁市中考数学试卷及详细答案(共20页).doc

上传人:飞****2 文档编号:13313522 上传时间:2022-04-28 格式:DOC 页数:21 大小:493.50KB
返回 下载 相关 举报
2017年山东省济宁市中考数学试卷及详细答案(共20页).doc_第1页
第1页 / 共21页
2017年山东省济宁市中考数学试卷及详细答案(共20页).doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2017年山东省济宁市中考数学试卷及详细答案(共20页).doc》由会员分享,可在线阅读,更多相关《2017年山东省济宁市中考数学试卷及详细答案(共20页).doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1的倒数是()A6B6CD2单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A2B3C4D53下列图形中是中心对称图形的是()ABCD4某桑蚕丝的直径约为0.米,将0.用科学记数法表示是()A1.6104B1.6105C1.6106D161045下列几何体中,主视图、俯视图、左视图都相同的是()ABCD6若+1在实数范围内有意义,则x满足的条件是()AxBxCx=Dx7计算(a2)3+a2a3a2a3,结果是()A2a5aB2a5Ca5Da68将分别标有“孔”“孟”“之

2、”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()ABCD9如图,在RtABC中,ACB=90,AC=BC=1,将RtABC绕点A逆时针旋转30后得到RtADE,点B经过的路径为,则图中阴影部分的面积是()ABCD10如图,A,B是半径为1的O上两点,且OAOB,点P从点A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()ABC或D或二、填空题(本大题共5小题,每小题3

3、分,共15分)11分解因式:ma2+2mab+mb2= 12请写出一个过点(1,1),且与x轴无交点的函数解析式: 13孙子算经是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是 14如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是 15如图,正六边形A1B1C1D1E1F1的边

4、长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 三、解答题(本大题共7小题,共55分)16(5分)解方程:=117(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论18(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y

5、=x+60(30x60)设这种双肩包每天的销售利润为w元(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19(8分)如图,已知O的直径AB=12,弦AC=10,D是的中点,过点D作DEAC,交AC的延长线于点E(1)求证:DE是O的切线;(2)求AE的长20(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到

6、折痕BM,同时得到线段BN,MN请你观察图1,猜想MBN的度数是多少,并证明你的结论(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论21(9分)已知函数y=mx2(2m5)x+m2的图象与x轴有两个公共点(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,当nx1时,y的取值范围是1y3n,求n的值;函数C2:y=m(xh)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式22(

7、11分)定义:点P是ABC内部或边上的点(顶点除外),在PAB,PBC,PCA中,若至少有一个三角形与ABC相似,则称点P是ABC的自相似点例如:如图1,点P在ABC的内部,PBC=A,PCB=ABC,则BCPABC,故点P是ABC的自相似点请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x0)上的任意一点,点N是x轴正半轴上的任意一点(1)如图2,点P是OM上一点,ONP=M,试说明点P是MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求MON的自相似点的坐标;(

8、3)是否存在点M和点N,使MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1的倒数是()A6B6CD【解答】解:的倒数是6故选:A2单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A2B3C4D5【解答】解:由题意,得m=2,n=3m+n=2+3=5,故选:D3下列图形中是中心对称图形的是()ABCD【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误故选C4某桑蚕丝的直径约为0.米,将0.

9、用科学记数法表示是()A1.6104B1.6105C1.6106D16104【解答】解:0.=1.6105;故选;B5下列几何体中,主视图、俯视图、左视图都相同的是()ABCD【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B6若+1在实数范围内有意义,则x满足的条件是()AxBxCx=

10、Dx【解答】解:由题意可知:解得:x=故选(C)7计算(a2)3+a2a3a2a3,结果是()A2a5aB2a5Ca5Da6【解答】解:(a2)3+a2a3a2a3=a6+a5a5=a6故选:D8将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()ABCD【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率=故选B9如图,在RtABC中,ACB=90,AC=

11、BC=1,将RtABC绕点A逆时针旋转30后得到RtADE,点B经过的路径为,则图中阴影部分的面积是()ABCD【解答】解:ACB=90,AC=BC=1,AB=,S扇形ABD=又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=故选:A10如图,A,B是半径为1的O上两点,且OAOB,点P从点A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()ABC或D或【解答】解:当点P顺时针旋转时,图象是,当点P逆时针旋转时,图

12、象是,故答案为,故选D二、填空题(本大题共5小题,每小题3分,共15分)11分解因式:ma2+2mab+mb2=m(a+b)2【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)212请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一)【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=11=1,所以反比例函数y=(答案不唯一)符合题意故答案可以是:y=(答案不唯一)13孙子算经是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48

13、文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是【解答】解:由题意可得,故答案为:14如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0【解答】解:根据作图方法可得,点P在第二象限角平分线上,点P到x轴、y轴的距离相等,即|b|=|a|,又点P(a,b)第二象限内,b=a,即a+b=0,故答案为:a+b=015如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续

14、下去,则正六边形A4B4C4D4E4F4的面积是【解答】解:由正六边形的性质得:A1B1B2=90,B1A1B2=30,A1A2=A2B2,B1B2=A1B1=,A2B2=A1B2=B1B2=,正六边形A1B1C1D1E1F1正六边形A2B2C2D2E2F2,正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,正六边形A1B1C1D1E1F1的面积=61=,正六边形A2B2C2D2E2F2的面积=,同理:正六边形A4B4C4D4E4F4的面积=()3=;故答案为:三、解答题(本大题共7小题,共55分)16(5分)解方程:=1【解答】解:去分母得:2x=x2

15、+1,移项合并得:x=1,经检验x=1是分式方程的解17(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论【解答】解:(1)由题意可得:该班总人数是:2255%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:4085%=34(人),第三次优秀率为:100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等18(7分)某商店经销一种双肩包,已知

16、这种双肩包的成本价为每个30元市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=x+60(30x60)设这种双肩包每天的销售利润为w元(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【解答】解:(1)w=(x30)y=(x+60)(x30)=x2+30x+60x1800=x2+90x1800,w与x之间的函数解析式w=x2+90x1800;(2)根据题意得:w=x2+9

17、0x1800=(x45)2+225,10,当x=45时,w有最大值,最大值是225(3)当w=200时,x2+90x1800=200,解得x1=40,x2=50,5048,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价定为40元19(8分)如图,已知O的直径AB=12,弦AC=10,D是的中点,过点D作DEAC,交AC的延长线于点E(1)求证:DE是O的切线;(2)求AE的长【解答】(1)证明:连接OD,D为的中点,=,BOD=BAE,ODAE,DEAC,ADE=90,AED=90,ODDE,则DE为圆O的切线;(2)解:过点O作OFAC,AC=10,

18、AF=CF=AC=5,OFE=DEF=ODE=90,四边形OFED为矩形,FE=OD=AB,AB=12,FE=6,则AE=AF+FE=5+6=1120(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN请你观察图1,猜想MBN的度数是多少,并证明你的结论(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论【解答】解:(1)猜想:MBN=30理由:如图1中,连接AN,直线EF是AB的垂直平分线,N

19、A=NB,由折叠可知,BN=AB,AB=BN=AN,ABN是等边三角形,ABN=60,NBM=ABM=ABN=30(2)结论:MN=BM折纸方案:如图2中,折叠BMN,使得点N落在BM上O处,折痕为MP,连接OP理由:由折叠可知MOPMNP,MN=OM,OMP=NMP=OMN=30=B,MOP=MNP=90,BOP=MOP=90,OP=OP,MOPBOP,MO=BO=BM,MN=BM21(9分)已知函数y=mx2(2m5)x+m2的图象与x轴有两个公共点(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,当nx1时,y的取值范围是1y3n,求n的

20、值;函数C2:y=m(xh)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式【解答】解:(1)函数图象与x轴有两个交点,m0且(2m5)24m(m2)0,解得:m且m0m为符合条件的最大整数,m=2函数的解析式为y=2x2+x(2)抛物线的对称轴为x=nx1,a=20,当nx1时,y随x的增大而减小当x=n时,y=3n2n2+n=3n,解得n=2或n=0(舍去)n的值为2(3)y=2x2+x=2(x+)2,M(,)如图所示:当点P在OM与O的交点处时,PM有最大值设直线OM的解析式为y=kx,将

21、点M的坐标代入得:k=,解得:k=OM的解析式为y=x设点P的坐标为(x,x)由两点间的距离公式可知:OP=,解得:x=2或x=2(舍去)点P的坐标为(2,1)当点P与点M距离最大时函数C2的解析式为y=2(x2)2+122(11分)定义:点P是ABC内部或边上的点(顶点除外),在PAB,PBC,PCA中,若至少有一个三角形与ABC相似,则称点P是ABC的自相似点例如:如图1,点P在ABC的内部,PBC=A,PCB=ABC,则BCPABC,故点P是ABC的自相似点请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x0)上的任意一点,点N是x轴正半轴上的任意一点(

22、1)如图2,点P是OM上一点,ONP=M,试说明点P是MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求MON的自相似点的坐标;(3)是否存在点M和点N,使MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由【解答】解:(1)ONP=M,NOP=MON,NOPMON,点P是MON的自相似点;过P作PDx轴于D,则tanPOD=,AON=60,当点M的坐标是(,3),点N的坐标是(,0),MNO=90,NOPMON,NPO=MNO=90,在RtOPN中,OP=ONcos60=,OD=

23、OPcos60=,PD=OPsin60=,P(,);(2)作MHx轴于H,如图3所示:点M的坐标是(3,),点N的坐标是(2,0),OM=2,直线OM的解析式为y=x,ON=2,MOH=30,分两种情况:如图3所示:P是MON的相似点,PONNOM,作PQx轴于Q,PO=PN,OQ=ON=1,P的横坐标为1,y=1=,P(1,);如图4所示:由勾股定理得:MN=2,P是MON的相似点,PNMNOM,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,P(2,);综上所述:MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使MON无自相似点,M(,3),N(2,0);理由如下:M(,3),N(2,0),OM=2=ON,MON=60,MON是等边三角形,点P在MON的内部,PONOMN,PNOMON,存在点M和点N,使MON无自相似点专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁