自动控制原理实验报告-太原理工(共23页).docx

上传人:飞****2 文档编号:13306963 上传时间:2022-04-28 格式:DOCX 页数:23 大小:1.33MB
返回 下载 相关 举报
自动控制原理实验报告-太原理工(共23页).docx_第1页
第1页 / 共23页
自动控制原理实验报告-太原理工(共23页).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《自动控制原理实验报告-太原理工(共23页).docx》由会员分享,可在线阅读,更多相关《自动控制原理实验报告-太原理工(共23页).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上本科实验报告课程名称: 自动控制原理 实验项目: 典型环节的时域特性 实验地点: 自动控制原理实验室 专业班级: 学号: 学生姓名: 指导教师: 2012年 5 月实验一 典型环节的时域特性一、实验目的学会利用自动控制实验箱对控制系统进行典型环节时域分析二、实验设备TDN-AC/ACS+型控制试验箱一套,安装windows98系统和ACS2002应用软件的计算机一台三、实验内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。1比例环节 (P)A方框图B传递函数:C阶跃响应: 其中 D 模拟电路图E 理想与实际阶跃响应对照曲线: 取R0 =

2、 200K;R1 = 100K。 取R0 = 200K;R1 = 200K。2积分环节 (I)A方框图B传递函数: C阶跃响应: 其中 D模拟电路图 (5) 理想与实际阶跃响应曲线对照: 取R0 = 200K;C = 1uF。 取R0 = 200K;C = 2uF。3惯性环节 (T)(1) 方框图 (2) 传递函数:。(3) 模拟电路图 图1.1-8(4) 阶跃响应:,其中; (5) 理想与实际阶跃响应曲线对照: 取R0=R1=200K;C=1uF。 取R0=R1=200K;C=2uF。4比例微分环节 (PD)(1) 方框图 (2) 传递函数:(3) 阶跃响应:。 (4) 模拟电路图 (5)

3、理想与实际阶跃响应曲线对照: 取R0 = R2 = 100K,R3 = 10K,C = 1uF;R1 = 100K。 取R0=R2=100K,R3=10K,C=1uF;R1=200K。 四、实验步骤1.按所列举的比例环节的模拟电路图将线接好。检查无误后开启设备电源。2.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将开关分别设在“方波”档和“500ms12s”档,调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。3.将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别

4、监测模拟电路的输入Ui端和输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。4.改变几组参数,重新观测结果。5.用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。五、实验结果记录比例环节积分环节比例微分惯性环节实验心得:通过团队合作成功完成了实验,进一步理解了典型环节的时域特性。本科实验报告课程名称: 自动控制原理 实验项目: 典型二阶系统的时域特性 实验地点: 自动控制原理实验室 专业班级: 学号: 学生姓名: 指导教师: 2012年 5 月实验二 典型二阶系统的时

5、域特性一、实验目的学会利用自动控制实验箱对控制系统进行典型环节时域分析二、实验设备TDN-AC/ACS+型控制试验箱一套,安装windows98系统和ACS2002应用软件的计算机一台三、实验内容典型的二阶系统稳定性分析(1) 结构框图 (2) 对应的模拟电路图 (3) 理论分析系统开环传递函数为:;开环增益。(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。, , 系统闭环传递函数为:其中自然振荡角频率:;阻尼比:。典型的三阶系统稳定性分析(1) 结构框图 (2) 模拟电路图 (3) 理论分析系统

6、的开环传函为:(其中), 系统的特征方程为:。四、实验步骤信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将开关分别设在“方波”档和“500ms12s”档,调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s左右。典型二阶系统瞬态性能指标的测试(1) 按模拟电路图1.2-2接线,将1中的方波信号接至输入端,取R = 10K。(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp和调节时间tS。(3) 分别按R = 20K;40K;100K;改变系统开环增益,观察响应曲线C(t),测量并

7、记录改变图2系统元件参数R1大小,研究不同参数特征下的时域响应。图2中参数关系R0=100K ,=R1/2R0,T=R0C。图3a、图3b、图3c分别对应二阶系统在欠阻尼,临界阻尼,过阻尼三种情况下的阶跃响应曲线:图3a图3c图3b五、实验结果记录1.欠阻尼状态:R=10K2.欠阻尼状态:R=20K 3临界阻尼:R=40K4过阻尼:R=100K实验心得:通过实验学会了利用自动控制实验箱对二阶控制系统进行时域分析,增加了对所学知识的理解。本科实验报告课程名称: 自动控制原理 实验项目: 控制系统的稳定性和稳态误差 实验地点: 多学科楼机房 专业班级: 学号: 学生姓名: 指导教师: 2012年

8、5 月实验三 控制系统的稳定性和稳态误差一、实验目的1学会利用MATLAB对控制系统的稳定性进行分析;2学会利用MATLAB计算系统的稳态误差。二、实验设备安装Windows系统和MATLAB软件的计算机一台。三、实验内容1利用MATLAB描述系统数学模型如果系统的的数学模型可用如下的传递函数表示则在MATLAB下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。即num=b0,b1 , bm; den=1,a1,a2 ,an例2-1 若系统的传递函数为试利用MATLAB表示。解 对于以上系统的传递函数,可以将其用下列MATLAB命令表示num=4;den=1,3,2,

9、5;printsys(num,den)结果显示:num/den = 4 - s3 + 3 s2 + 2 s+5当传递函数的分子或分母由若干个多项式乘积表示时,它可由MATLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p为p1和p2多项式的乘积多项式系数向量。conv( )函数的调用是允许多级嵌套的。例2-2 若系统的传递函数为试利用MATLAB求出其用分子和分母多项式表示的传递函数。解 对于以上系统的传递函数,可以将其用下列MATLAB命令表示num=4*1,6

10、,6;den=conv(1,0,conv(1 1,1,3,2,5);printsys(num,den)结果显示:num/den = 4 s2 + 24 s + 24 - s5 + 4 s4 + 5 s3 + 7 s2 + 5 s2利用MATLAB分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。对线性系统来说,如果一个连续系统的所有极点都位于左半s平面,则该系统是稳定的。MATLAB中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p)其中,p

11、为特征多项式的系数向量;r为特征多项式的根。另外,MATLAB中的pzmap( )函数可绘制系统的零极点图,其调用格式为p,z=pzmap(num,den)其中,num和den分别为系统传递函数的分子和分母多项式的系数按降幂排列构成的系数行向量。当pzmap( )函数不带输出变量时,可在当前图形窗口中绘制出系统的零极点图;当带有输出变量时,也可得到零极点位置,如需要可通过pzmap(p,z)绘制出零极点图,图中的极点用“”表示,零点用“o”表示。例2-3 已知系统的传递函数为给出系统的零极点图,并判定系统的稳定性。解 利用以下MATLAB命令num=3 2 1 4 2;den=3 5 1 2

12、2 1;r=roots(den),pzmap(num,den)执行结果可得以下极点和如图2-1所示的零极点图。r = -1.6067 0.4103 + 0.6801i 0.4103 - 0.6801i -0.4403 + 0.3673i -0.4403 - 0.3673i 由以上结果可知,系统在右半s平面有两个极点,故系统不稳定。图2-1 零极点图3利用MATLAB计算系统的稳态误差对于图2-2所示的反馈控制系统,根据误差的输入端定义,利用拉氏变换终值定理可得稳态误差ess图2-2 反馈控制系统在MATLAB中,利用函数dcgain( )可求取系统在给定输入下的稳态误差,其调用格式为ess=d

13、cgain (nume,dene)其中,ess为系统的给定稳态误差;nume和dene分别为系统在给定输入下的稳态传递函数的分子和分母多项式的系数按降幂排列构成的系数行向量例2-4 已知单位反馈系统的开环传递函数为试求该系统在单位阶跃和单位速度信号作用下的稳态误差。解 (1) 系统在单位阶跃和单位速度信号作用下的稳态传递函数分别为(2) MATLAB命令为nume1=1 2 1;dene1=1 2 2;ess1=dcgain (nume1,dene1)nume2=1 2 1;dene2=1 2 2 0;ess2=dcgain (nume2,dene2)执行后可得以下结果。ess1 = 0.50

14、00ess2 = Inf实验心得 通过实验,学会了利用MATLAB对控制系统的稳定性进行分析,学会了利用MATLAB计算系统的稳态误差。本科实验报告课程名称: 自动控制原理 实验项目: 控制系统的根轨迹和频域特性分析 实验地点: 多学科楼机房 专业班级: 学号: 学生姓名: 指导教师: 2012年 5 月实验四 控制系统的根轨迹和频域特性分析一、实验目的1学会利用MATLAB绘制系统的根轨迹,并对系统进行分析;2学会利用MATLAB对系统进行频域特性分析。二、实验设备安装Windows系统和MATLAB软件的计算机一台。三、实验内容1基于MATLAB的控制系统根轨迹分析1)利用MATLAB绘制

15、系统的根轨迹利用rlocus( )函数可绘制出当根轨迹增益k由0至+变化时,闭环系统的特征根在s平面变化的轨迹,该函数的调用格式为r,k=rlocus(num,den) 或 r,k=rlocus(num,den,k)其中,返回值r为系统的闭环极点,k为相应的增益。rlocus( )函数既适用于连续系统,也适用于离散系统。rlocus(num,den)绘制系统根轨迹时,增益k是自动选取的,rlocus(num,den, k)可利用指定的增益k来绘制系统的根轨迹。在不带输出变量引用函数时,rolcus( )可在当前图形窗口中绘制出系统的根轨迹图。当带有输出变量引用函数时,可得到根轨迹的位置列向量r

16、及相应的增益k列向量,再利用plot(r,x)可绘制出根轨迹。2)利用MATLAB获得系统的根轨迹增益在系统分析中,常常希望确定根轨迹上某一点处的增益值k,这时可利用MATLAB中的rlocfind( )函数,在使用此函数前要首先得到系统的根轨迹,然后再执行如下命令k,poles=rlocfind(num,den) 或 k,poles=rlocfind(num,den,p)其中,num和den分别为系统开环传递函数的分子和分母多项式的系数按降幂排列构成的系数向量;poles为所求系统的闭环极点;k为相应的根轨迹增益;p为系统给定的闭环极点。例3-1 已知某反馈系统的开环传递函数为试绘制该系统根

17、轨迹,并利用根轨迹分析系统稳定的k值范围。解 MATLAB的命令为num=1;den=conv(1,0,conv(1,1,1,2);rlocus(num,den);k,poles=rlocfind(num,den)执行以上命令,并移动鼠标到根轨迹与虚轴的交点处单击鼠标左键后可得如图3-1所示的根轨迹和如下结果:图3-1 负反馈系统的根轨迹Select a point in the graphics windowselected_point = 0.0059 + 1.4130ik = 6.0139poles = -3.0013 0.0006 + 1.4155i 0.0006 - 1.4155i由

18、此可见根轨迹与虚轴交点处的增益k=6,这说明当k6时,系统不稳定;利用rlocfind( )函数也可找出根轨迹从实轴上的分离点处的增益k =0.38, 这说明当0k0.38时,系统为单调衰减稳定,当0.38knum=1;den=conv(1,0,conv(1,1,1,2);rlocus(-num,den);k,poles=rlocfind(-num,den,-2.3+2.02j)执行以上命令可得如下结果和如图3-2所示的根轨迹。k =15.0166poles = -2.3011 + 2.0195i -2.3011 - 2.0195i 1.6021由此可见,点-2.3j2.02确实为根轨迹上的,

19、且该点处的增益为15.0166,而由于另一个闭环极点位于正实轴上的1.6021点处,故此时系统不稳定。实际上由于系统的一条根轨迹一直位于正实轴上,因此该系统在所有的正值增益k值下均不稳定。图3-2 正反馈系统的根轨迹例3-3 已知二阶系统的开环传递函数为绘制出当wn=3和=0.3时系统的Bode图。解 MATLAB命令为wn=3;zeta=0.3; w=logspace(-1,2);num=wn.2;den=1 2*zeta*wn wn.2;bode(num,den,w);grid;执行后得如图3-4所示Bode图。在曲线窗口中,通过利用鼠标单击曲线上任意一点,可以获得此点所对应的系统在该点的

20、频率与幅值或频率与相位等有关信息。例3-4 已知系统的开环传递函数为绘制Nyquist图,并判断系统的稳定性。解 MATLAB命令为num=0.5;den=1 2 1 0.5; nyquist(num,den) 执行后可得如图3-5所示的曲线,由于Nyquist曲线没有包围(-1,j0)点,且P0,所以由G(s)H(s)构成的单位负反馈闭环系统稳定。在Nyquist曲线窗口中,也可利用鼠标通过单击曲线上任意一点,获得此点所对应的系统的开环频率特性,在该点的实部和虚部及其频率的值,实验心得:通过实验学会了利用MATLAB绘制系统的根轨迹,并对系统进行分析;学会了利用MATLAB对系统进行频域特性分析。对所学内容的进一步理解。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁