《2016-2017鲁教版五四新版八年级数学(下册)期末测试卷(共25页).doc》由会员分享,可在线阅读,更多相关《2016-2017鲁教版五四新版八年级数学(下册)期末测试卷(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上八年级下册期末考试试卷一、选择题(本题共12小题)1下列式子中,属于最简二次根式的是()ABCD2函数y=的自变量x的取值范围是()Ax0Bx1Cx1Dx0且x13下列命题:若三条线段的比为1:1:,则它们组成一个等腰直角三角形;两条对角线相等的平行四边形是矩形;对角线互相垂直的四边形是菱形;两个邻角相等的平行四边形是矩形中,其中正确命题的个数是()A1个B2个C3个D4个4如图,在平面直角坐标系中,以A(1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(4,1)C(1,1)D(3,1)5如图,在矩形
2、ABCD中,AB=8,BC=4,将矩形AC折叠,点B落在点B处,重叠部分AFC的面积为()A12B10C8D66如图,已知在ABC中,点D、E、F分别是边AB、AC、BC上的点,DEBC,EFAB,且AD:DB=3:5,那么CF:CB等于()A5:8B3:8C3:5D2:57已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A0B1C1D28如图,P是RtABC的斜边BC上异于B、C的一点,过P点作直线截ABC,使截得的三角形与ABC相似,满足这样条件的直线共有()A1条B2条C3条D4条9如图,在ABCD中,AEBC于E,AE=EB=EC=a,且a是一元二次方
3、程x2+2x3=0的根,则ABCD的周长为()A4+2B12+6C2+2D2+或12+610如图,下列图中小正方形的边长为1,阴影三角形的顶点均在格点上,与ABC相似的是()ABCD11已知命题“关于x的一元二次方程x2+bx+1=0,当b0时必有实数解”,能说明这个命题是假命题的一个反例可以是()Ab=1Bb=2Cb=2Db=012如图,在ABC中,A=36,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()AC=2ABBD平分ABCCSBCD=SBODD点D为线段AC的黄金分割点二、填空题(本题共8小题)13如图,在ABCD中,E在AB上,CE、BD
4、交于F,若AE:BE=4:3,且BF=2,则DF=.14若(x2+y2)25(x2+y2)6=0,则x2+y2=15已知a、b、c均为实数,且+|b+1|+(c+3)2=0,方程ax2+bx+c=0的根是16下列说法中:所有的等腰三角形都相似;所有的正三角形都相似;所有的正方形都相似;所有的矩形都相似其中说法正确的序号是17若的整数部分是a,小数部分是b,则=18学校组织了一次篮球单循环比赛实数a在数轴上的位置如图所示,则|a1|+=20如图,ABC中,A,B两个顶点在x轴的上方,点C的坐标是(1,0)以点C为位似中心,在x轴的下方作ABC的位似图形ABC,并把ABC放大到原来的2倍设点B的对
5、应点B的横坐标是a,则点B的横坐标是三、解答题(本大题共7小题)21(1)计算:(2)(+2)(2)解方程:(x+1)(x2)=x+122一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?23如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DEAC且DE=AC,连接AE交OD于点F,连接CE、OE(1)求证:OE=CD;(2)若菱形ABCD的边长为2,ABC=60,求AE的长24如图
6、,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷经过了解,教学楼、水塔的高分别为20m和30m,它们之间的距离为30m,小张身高为1.6m(眼睛到头顶的距离忽略不计)小张要想看到水塔,他与教学楼的距离至少应有多少m?25阅读下面的例题,解方程x2|x|2=0解:原方程化为|x|2|x|2=0令y=|x|,原方程化成y2y2=0解得:y1=2,y2=1当|x|=2,x=2;当|x|=1时(不合题意,舍去)原方程的解是x1=2 x2=2请模仿上面的方法解方程:(x1)25|x1|6=026【问题提出】如果我们身边没有量角器和三
7、角板,如何作15大小的角呢?【实践操作】如图第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到ADEFBC第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM折痕BM 与折痕EF相交于点P连接线段BN,PA,得到PA=PB=PN【问题解决】(1)求NBC的度数;(2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除NBC的度数以外)(3)你能继续折出15大小的角了吗?说说你是怎么做的27如图,ABBD,CDBD,垂足分别为B、D,AD、BC相交于点E,过点E作EFBD(1)猜想、这三个量之间的数量关系并证明(2)若将图中
8、的垂直改为斜交,如图,ABCD,AD、BC相交于点E,过点E作EFAB交BD于点F,试问(1)中的数量关系还成立吗?说明理由(3)试找出SABD,SBED,SBDC之间的关系式,并说明理由参考答案与试题解析一、选择题(本题共12小题)1下列式子中,属于最简二次根式的是()ABCD【考点】最简二次根式【分析】根据最简二次根式的定义判断即可【解答】解:A、,不是最简二次根式,错误;B、,不是最简二次根式,错误;C、不能化简,是最简二次根式,正确;D、不是最简二次根式,错误;故选C【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在
9、二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式2函数y=的自变量x的取值范围是()Ax0Bx1Cx1Dx0且x1【考点】函数自变量的取值范围【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解【解答】解:由题意得,x0且1x0,解得x0且x1故选D【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义3下列命题:若三条线段的比为1:1:,则它们组成一个等腰直角三角形;两条对角线相等的平行四边形是矩形;对角线互相垂直的四边形是菱形;两个邻角相等的平行四边形是矩形中,其中正确命题的个数是()A1个B2个C3个D
10、4个【考点】命题与定理【分析】根据勾股定理的逆定理可对进行判断;根据矩形的判定方法对进行判断;根据菱形的判定方法对进行判断【解答】解:若三条线段的比为1:1:,则它们组成一个等腰直角三角形,所以正确;两条对角线相等的平行四边形是矩形,所以正确;对角线互相垂直平分的四边形是菱形,所以错误;两个邻角相等的平行四边形是矩形,所以正确故选C【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理4如图,在平面直角坐标系中,以A(1,0),
11、B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(4,1)C(1,1)D(3,1)【考点】平行四边形的判定;坐标与图形性质【分析】分别以AC、AB、BC为对角线画平行四边形,再分别写出各点的坐标,即可选出答案【解答】解:如图所示:以AC为对角线,可以画出AFCB,F(3,1);以AB为对角线,可以画出ACBE,E(1,1);以BC为对角线,可以画出ACDB,D(3,1);故选:B【点评】此题主要考查了平行四边形的判定,关键是考虑各种情况,正确画出图形5如图,在矩形ABCD中,AB=8,BC=4,将矩形AC折叠,点B落在点B处,重叠部分A
12、FC的面积为()A12B10C8D6【考点】翻折变换(折叠问题);矩形的性质【分析】已知AD为AF边上的高,要求AFC的面积,求得FC即可,求证AFDCFB,得BF=DF,设DF=x,则在RtAFD中,根据勾股定理求x,于是得到CF=CDDF,即可得到答案【解答】解:由翻折变换的性质可知,AFDCFB,DF=BF,设DF=x,则AF=CF=8x,在RtAFD中,AF2=DF2+AD2,即(8x)2=x2+42,解之得:x=3,CF=CDFD=83=5,SAFC=AFBC=10故选:B【点评】本题考查了翻折变换折叠问题,勾股定理的正确运用,本题中设DF=x,根据直角三角形AFD中运用勾股定理求x
13、是解题的关键6如图,已知在ABC中,点D、E、F分别是边AB、AC、BC上的点,DEBC,EFAB,且AD:DB=3:5,那么CF:CB等于()A5:8B3:8C3:5D2:5【考点】平行线分线段成比例【分析】先由AD:DB=3:5,求得BD:AB的比,再由DEBC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EFAB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案【解答】解:AD:DB=3:5,BD:AB=5:8,DEBC,CE:AC=BD:AB=5:8,EFAB,CF:CB=CE:AC=5:8故选A【点评】此题考查了平行线分线段成比例定理此题比较简单
14、,注意掌握比例线段的对应关系是解此题的关键7已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A0B1C1D2【考点】一元二次方程的解【专题】计算题【分析】将c=ab代入原方程左边,再将方程左边因式分解即可【解答】解:依题意,得c=ab,原方程化为ax2+bxab=0,即a(x+1)(x1)+b(x1)=0,(x1)(ax+a+b)=0,x=1为原方程的一个根,故选B【点评】本题考查了一元二次方程解的定义方程的解是使方程左右两边成立的未知数的值8如图,P是RtABC的斜边BC上异于B、C的一点,过P点作直线截ABC,使截得的三角形与ABC相似,满足这样条件的直线
15、共有()A1条B2条C3条D4条【考点】相似三角形的判定【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以【解答】解:由于ABC是直角三角形,过P点作直线截ABC,则截得的三角形与ABC有一公共角,所以只要再作一个直角即可使截得的三角形与RtABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线故选:C【点评】本题主要考查三角形相似判定定理及其运用解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似9如图,在ABCD中,AEBC于E,AE=EB=EC=a,且a是一元二次方程x2+2x3=0的根,则ABCD的周长为
16、()A4+2B12+6C2+2D2+或12+6【考点】平行四边形的性质;解一元二次方程-因式分解法【分析】先解方程求得a,再根据勾股定理求得AB,从而计算出ABCD的周长即可【解答】解:a是一元二次方程x2+2x3=0的根,a2+2a3=0,即(a1)(a+3)=0,解得,a=1或a=3(不合题意,舍去)AE=EB=EC=a=1在RtABE中,AB=,BC=EB+EC=2,ABCD的周长2(AB+BC)=2(+2)=4+2故选A【点评】本题考查了平行四边形的性质,勾股定理,以及用因式分解法解一元二次方程,是基础知识要熟练掌握10如图,下列图中小正方形的边长为1,阴影三角形的顶点均在格点上,与A
17、BC相似的是()ABCD【考点】相似三角形的判定【分析】可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【解答】解:根据勾股定理,AB=,AC=,BC=2,所以,三边之比为:2观各选项,只有A选项三角形符合,与所给图形的三角形相似故选:A【点评】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键11已知命题“关于x的一元二次方程x2+bx+1=0,当b0时必有实数解”,能说明这个命题是假命题的一个反例可以是()Ab=1Bb=2Cb=2Db=0【考点】命题与定理;根的
18、判别式【专题】常规题型【分析】先根据判别式得到=b24,在满足b0的前提下,取b=1得到0,根据判别式的意义得到方程没有实数解,于是b=1可作为说明这个命题是假命题的一个反例【解答】解:=b24,由于当b=1时,满足b0,而0,方程没有实数解,所以当b=1时,可说明这个命题是假命题故选:A【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理也考查了根的判别式12如图,在ABC中,A=36,AB=AC,AB的垂直平分线OD交A
19、B于点O,交AC于点D,连接BD,下列结论错误的是()AC=2ABBD平分ABCCSBCD=SBODD点D为线段AC的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割【分析】求出C的度数即可判断A;求出ABC和ABD的度数,求出DBC的度数,即可判断B;根据三角形面积即可判断C;求出DBCCAB,得出BC2=BCAC,求出AD=BC,即可判断D【解答】解:A、A=36,AB=AC,C=ABC=72,C=2A,正确,B、DO是AB垂直平分线,AD=BD,A=ABD=36,DBC=7236=36=ABD,BD是ABC的角平分线,正确,C,根据已知不能推出BCD的面积和BOD面积相
20、等,错误,D、C=C,DBC=A=36,DBCCAB,=,BC2=CDAC,C=72,DBC=36,BDC=72=C,BC=BD,AD=BD,AD=BC,AD2=CDAC,即点D是AC的黄金分割点,正确,故选C【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力二、填空题(本题共8小题)13如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=.【考点】相似三角形的判定与性质;平行四边形的性质【专题】压轴题【分析】由四边形ABCD是平行四边形,可得ABCD,AB=CD,继而可判定BEFDCF
21、,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解【解答】解:四边形ABCD是平行四边形,ABCD,AB=CD,AE:BE=4:3,BE:AB=3:7,BE:CD=3:7ABCD,BEFDCF,BF:DF=BE:CD=3:7,即2:DF=3:7,DF=故答案为:【点评】此题考查了相似三角形的判定与性质与平行四边形的性质此题比较简单,解题的关键是根据题意判定BEFDCF,再利用相似三角形的对应边成比例的性质求解14若(x2+y2)25(x2+y2)6=0,则x2+y2=6【考点】换元法解一元二次方程【专题】换元法【分析】设x2+y2=t则原方程转化为关于t的一元二次方程t25t
22、6=0,即(t6)(t+1)=0;然后解关于t的方程即可【解答】解:设x2+y2=t(t0)则t25t6=0,即(t6)(t+1)=0,解得,t=6或t=1(不合题意,舍去);故x2+y2=6故答案是:6【点评】本题考查了换元法解一元二次方程解答该题时,注意x2+y2=t中的t的取值范围:t015已知a、b、c均为实数,且+|b+1|+(c+3)2=0,方程ax2+bx+c=0的根是x1=1,x2=【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方【分析】直接利用非负数的性质得出a,b,c的值,进而代入方程求出答案【解答】解: +|b+1|+(c+3)2=0,a=2,
23、b=1,c=3,ax2+bx+c=0可整理为:2x2x3=0,则(x+1)(2x3)=0,解得:x1=1,x2=故答案为:x1=1,x2=【点评】此题主要考查了非负数的性质以及一元二次方程的解法,正确掌握十字相乘法解方程是解题关键16下列说法中:所有的等腰三角形都相似;所有的正三角形都相似;所有的正方形都相似;所有的矩形都相似其中说法正确的序号是【考点】相似图形【分析】根据正方形、矩形、等边三角形、等腰三角形的性质进行判断即可【解答】解:所有的等腰三角形都相似,错误;所有的正三角形都相似,正确;所有的正方形都相似,正确;所有的矩形都相似,错误故答案为:【点评】本题考查了相似图形的知识,熟练掌握
24、各特殊图形的性质是解题的关键,难度一般17若的整数部分是a,小数部分是b,则=1【考点】估算无理数的大小【专题】计算题【分析】因为,由此得到的整数部分a,再进一步表示出其小数部分b【解答】解:因为,所以a=1,b=故=1故答案为:1【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力之一,本题要求我们能够正确估算出一个无理数的大小18学校组织了一次篮球单循环比赛(2004山西)实数a在数轴上的位置如图所示,则|a1|+=1【考点】二次根式的性质与化简;实数与数轴【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a1与0,a2与0的关系,然后根据
25、绝对值的意义和二次根式的意义化简【解答】解:根据数轴上显示的数据可知:1a2,a10,a20,|a1|+=a1+2a=1故答案为:1【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简二次根式的化简规律总结:当a0时, =a;当a0时, =a20如图,ABC中,A,B两个顶点在x轴的上方,点C的坐标是(1,0)以点C为位似中心,在x轴的下方作ABC的位似图形ABC,并把ABC放大到原来的2倍设点B的对应点B的横坐标是a,则点B的横坐标是(a+3)【考点】位似变换;坐标与图形性质【分析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似比列式计算即可得解【解答】解:设
26、点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)=a+1,解得x=(a+3)故答案为:(a+3)【点评】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键三、解答题(本大题共7小题)21(1)计算:(2)(+2)(2)解方程:(x+1)(x2)=x+1【考点】二次根式的混合运算;解一元二次方程-因式分解法【专题】探究型【分析】(1)根据二次根式的乘法和平方差公式可以对原式化简;(2)根据因式分解法可以解答此方程【解答】解:(1)(2)(+2)=(512)
27、=3(7)=3+7=10;(2)(x+1)(x2)=x+1移项,得(x+1)(x2)(x+1)=0(x+1)(x21)=0(x+1)(x3)=0x+1=0或x3=0,解得,x1=1,x2=3【点评】本题考查二次根式的混合运算、解一元二次方程因式分解法,解题的关键是明确二次根式混合运算的计算方法和用因式分解法解方程22一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?【考点】勾股定理的应用【分
28、析】根据题意,城门的长,宽,以及竹竿长是直角三角形的三个边长,等量关系为:城门长的平方+宽的平方=城门的两个对角长的平方,把相关数值代入即可【解答】解:竹竿的长为x米,横着比城门宽4米,竖着比城门高2米城门的长为(x2)米,宽为(x4)米,可列方程为(x4)2+(x2)2=x2,解得x1=10,x2=2(舍去)答:竹竿是10米【点评】本题考查的是勾股定理的应用及用一元二次方程解决实际问题,得到城门的长,宽,竹竿长是直角三角形的三个边长是解决问题的关键23如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DEAC且DE=AC,连接AE交OD于点F,连接CE、OE(1)求证:OE=CD;(2
29、)若菱形ABCD的边长为2,ABC=60,求AE的长【考点】菱形的性质;勾股定理的应用;矩形的性质【分析】(1)由菱形ABCD中,DEAC且DE=AC,易证得四边形OCED是平行四边形,继而可得OE=CD即可;(2)由菱形的对角线互相垂直,可证得四边形OCED是矩形,根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可【解答】(1)证明:四边形ABCD是菱形,OA=OC=AC,AD=CD,DEAC且DE=AC,DE=OA=OC,四边形OADE、四边形OCED都是平行四边形,OE=AD,OE=CD;(2)解:ACBD,四边形OCED是矩形,在菱形ABCD中,ABC=60,AC=AB=2
30、,在矩形OCED中,CE=OD=在RtACE中,AE=【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用注意证得四边形OCED是平行四边形,四边形OCED是矩形是关键24如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷经过了解,教学楼、水塔的高分别为20m和30m,它们之间的距离为30m,小张身高为1.6m(眼睛到头顶的距离忽略不计)小张要想看到水塔,他与教学楼的距离至少应有多少m?【考点】相似三角形的应用【专题】应用题【分析】由于AHDG,有EAHEDG故可用相似三角形的性质求解【解答】解:如图所示,AH
31、=18.4,DG=28.4,HG=30;AHDC,EAHEDG,解得:EH=55.2即他与教学楼的距离至少应有55.2米【点评】本题利用了相似三角形的性质求解,难易程度适中25阅读下面的例题,解方程x2|x|2=0解:原方程化为|x|2|x|2=0令y=|x|,原方程化成y2y2=0解得:y1=2,y2=1当|x|=2,x=2;当|x|=1时(不合题意,舍去)原方程的解是x1=2 x2=2请模仿上面的方法解方程:(x1)25|x1|6=0【考点】换元法解一元二次方程【专题】阅读型【分析】将方程第一项(x1)2变形为|x1|2,设y=|x1|,将方程化为关于y的一元二次方程,求出方程的解得到y的
32、值,即为|x1|的值,利用绝对值的代数意义即可求出x的值,即为原方程的解【解答】解:原方程化为|x1|25|x1|6=0,令y=|x1|,原方程化成y25y6=0,解得:y1=6,y2=1,当|x1|=6,x1=6,解得:x1=7,x2=5;当|x1|=1时(舍去)则原方程的解是x1=7,x2=5【点评】此题考查了换元法解一元二次方程,绝对值的代数意义,以及解一元二次方程分解因式法,弄清题意阅读材料中的例题的解法是解本题的关键26【问题提出】如果我们身边没有量角器和三角板,如何作15大小的角呢?【实践操作】如图第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到ADE
33、FBC第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM折痕BM 与折痕EF相交于点P连接线段BN,PA,得到PA=PB=PN【问题解决】(1)求NBC的度数;(2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除NBC的度数以外)(3)你能继续折出15大小的角了吗?说说你是怎么做的【考点】翻折变换(折叠问题);作图应用与设计作图【专题】计算题【分析】(1)根据折叠性质由对折矩形纸片ABCD,使AD与BC重合得到点P为BM的中点,即BP=PM,再根据矩形性质得BAM=90,ABC=90,则根据直角三角形斜边上的中线性质得PA=PB=PM,再根据折
34、叠性质由折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM折痕BM得到PA=PB=PM=PN,1=2,BNM=BAM=90,利用等要三角形的性质得2=4,利用平行线的性质由EFBC得到4=3,则2=3,易得1=2=3=ABC=30;(2)利用互余得到BMN=60,根据折叠性质易得AMN=120;(3)把30度的角对折即可【解答】解:(1)对折矩形纸片ABCD,使AD与BC重合,点P为BM的中点,即BP=PM,四边形ABCD为矩形,BAM=90,ABC=90,PA=PB=PM,折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM折痕BM,PA=PB=PM=PN,1=
35、2,BNM=BAM=90,2=4,EFBC,4=3,2=3,1=2=3=ABC=30,即NBC=30;(2)通过以上折纸操作,还得到了BMN=60,AMN=120等;(3)折叠纸片,使点A落在BM上,则可得到15的角【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质和直角三角形斜边上的中线性质27如图,ABBD,CDBD,垂足分别为B、D,AD、BC相交于点E,过点E作EFBD(1)猜想、这三个量之间的数量关系并证明(2)若将图中的垂直改为斜交,如图,ABCD,AD、BC相交于点E,过点E作EFAB交BD
36、于点F,试问(1)中的数量关系还成立吗?说明理由(3)试找出SABD,SBED,SBDC之间的关系式,并说明理由【考点】三角形综合题【分析】(1)易证EFABCD,则ABDEFD,根据相似三角形的对应边的比相等,即可证得=,同理=,两式相加即可得;(2)由题意知,两直线平行是很关键的条件,要根据三角形平行线分线段成比例,找出关系,然后相加就得到结果;(3)要用到第一问的结论,作出各个三角形的高,再把各面积用边表示出来,即可找到关系【解答】解:(1)+=,证明如下:ABBD,EFBD,EFAB,ABDEFD,=,同理=,+=+=1,即(+)EF=1,+=;(2)成立理由如下:ABEF,=,CDEF,=,+=+=1,即(+)EF=1,+=;(3)关系式为: +=证明如下:如图,分别过A作AMBD于M,过E作ENBD于N,过C作CKBD交BD的延长线于K由(1)可得: +=,+=,即+=,又BDAM=SABD, BDCK=SBCD, BDEN=SBED,+=【点评】本题主要考查了相似三角形的判定与性质,正确通过相似三角形的性质把线段的比进行转化是关键同时考查了平行线分线段成比例定理的运用专心-专注-专业