精选高中数学说课稿锦集7篇.docx

上传人:知****量 文档编号:13087138 上传时间:2022-04-27 格式:DOCX 页数:33 大小:40.05KB
返回 下载 相关 举报
精选高中数学说课稿锦集7篇.docx_第1页
第1页 / 共33页
精选高中数学说课稿锦集7篇.docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《精选高中数学说课稿锦集7篇.docx》由会员分享,可在线阅读,更多相关《精选高中数学说课稿锦集7篇.docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选高中数学说课稿锦集7篇精选高中数学说课稿锦集7篇 作为一名老师,常常要写一份优秀的说课稿,借助说课稿可以有效提高教学效率。那要怎么写好说课稿呢?以下是小编精心整理的高中数学说课稿7篇,仅供参考,大家一起来看看吧。 高中数学说课稿篇1 一、说教材 (一)教材的地位和作用 本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段中线、角平分线。通过本节内容学习,可

2、使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别。通过学习作图、观察与探究,会发现三角形的三条高所在的直线、三条角平分线、三条中线都各自交于一点,这为以后三角形的内心、重心等知识的学习打下一定的基础,另外,本节内容也是日后学习等腰三角形等特殊三角形的垫脚石。故学好本节内容是十分必要的。因此,对三角的高、中线、角平分线定义的理解及画法的掌握是本节教学的重点,而三角形的高由于三角形的形状改变而使其位置呈现多样性,学生难以掌握,故在各类三角形中作出它们是本课的难点。 (二)教学目标分析 本节课的教学设计力图体现“尊重学生,注重发展”的教学理念,着重培养和发展学生基本作图能力、语言表达

3、能力、观察能力等,根据这一目的确定本节教学目标为: 1、理解三角形的高、中线、角平分线的概念 2、能正确作出一个三角形的高、中线、角平分线 3、通过观察、探究、画一画、折一折与描述等数学活动,感受数学语言的准确性,提高观察能力,语言表达能力,发展推理能力。 重点:掌握三角形的高、中线、角平分线的概念,并能在具体三角形中画出它们 难点:在各种三角形中作出它们的高 二、说教法 1、情境创设法:利用张师傅如何将一块三角形的地分成面积相等的两块三角形地创设问题情境,并引导学生去简单分析思路,目的使数学能密切联系实际体现知识的形成和应用过程。以实际问题为出发点和归宿,更能贴近学生生活,以激发学生对学习本

4、节内容的求知欲,培养他们运用所学知识解决问题的能力。 2、加强学生学习的主动性与探究性在课堂中要充分调动学生自主学习的潜能,让他们自由探究中发现,从而发展他们的创新能力,让他们感受到成功的喜悦。学生在画一画、折一折、何三个探究活动中体验数学知识的形成过程。当学生在探究过程中遇到困难时,才取消组建的交流与合作,充分发挥学生的团队作用,以更好地激发学生的积极思维,得到更大的收获。 3、运用多媒体等作为教辅工具,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点。 三、说学法 1、本节重点是三角形的三种重要线段,难点是对三角形的角平分线、中线、高的准确理解、作图与正确

5、运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,从大量的活动入手获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。 2、小组讨论、合作探究,既可让学生互相启发,互相促进,积极交流,表达思想又可促进数学思考,扩大和加深对问题的认识,本节课中我让学生以小组进行探究,归纳图形特征,做到仔细观察,大胆探索,勇于发现,抽象概括。让学生通过探索活动来发现结论,经历知识的“再发现”过程,从而改变学生学习的方式,发展创新思维能力。 四、说教学过程: 1、创设问题情境,引出新知:从生活实例引出新问题,调动学生学习积极性 2、预习检查:以题组的形势 考点1:三角形的高 1.如图

6、7.1.2-1,在ABC中,BC边上的高是_;在AFC中,CF边上的高是_;在ABE中,AB边上的高是_. 2.如图7.1.2-2,ABC的三条高AD、BE、CF相交于点H,则ABH的三条高是_,这三条高交于_.BD是_、_、_的高. 3.如图7.1.2-3,在ABC中EFAC,BDAC于D,交EF于G,则下面说话中错误的是() A.BD是ABC的高BD是BCD的高C.EG是ABD的高D.BG是BEF的高 7.1.2三角形的高、中线、角平分线说课稿 图7.1.2-1图7.1.2-2图7.1.2-3 4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是() A.锐角三角形B.直

7、角三角形C.钝角三角形D.不能确定 5.三角形的三条高的交点一定在() A.三角形内部B.三角形的外部C.三角形的内部或外部D.以上答案都不对 考点2:三角形的中线与角平分线 6.如图7.1.2-5所示:(1)ADBC,垂足为D,则AD是_的高,_=_=90. (2)AE平分BAC,交BC于E点,则AE叫做ABC的_,_=_=7.1.2三角形的高、中线、角平分线说课稿_. (3)若AF=FC,则ABC的中线是_,SABF=_. (4)若BG=GH=HF,则AG是_的中线,AH是_的中线. 图7.1.2-5图7.1.2-6图7.1.2-7 7.如图7.1.2-6,DEBC,CD是ACB的平分线,

8、ACB=60,那么EDC=_度. 8.如图7.1.2-7,BD=DC,ABN=7.1.2三角形的高、中线、角平分线说课稿ABC,则AD是ABC的_线,BN是ABC的_, ND是BNC的_线. 9.下列判断中,正确的个数为() (1)D是ABC中BC边上的一个点,且BD=CD,则AD是ABC的中线 (2)D是ABC中BC边上的一个点,且ADC=90,则AD是ABC的高 (3)D是ABC中BC边上的一个点,且BAD=7.1.2三角形的高、中线、角平分线说课稿BAC,则AD是ABC的角平分线 (4)三角形的中线、高、角平分线都是线段 A.1B.2C.3D.4 3、探究活动1:探究三角形的高,师提出问

9、题,生独立解答,教师关注学生对高和边的对应关系是否明确,并结合图形引出三角形高的定义,并且利用图形,让生用语言描述,师加以修正,目的发展学生的观察力与语言表述能力。在此基础上让学生明确三角形的高是一条线段。为了培养学生的绘图能力,让小组之间合作完成锐角三角形、直角三角形、钝角三角形各边上的高。小组交流,归纳三角形高的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。 在活动中,师应重点关注: 学生能否多方位的加以探究 学生能否用流利的语言描述自己的发现 学生能否对不同的观点进行质疑,感受数学结论的正确性。之后设计的是巩固性练习,通过学生练习,对三角形高的的有关知识加以巩固,让学生从运用

10、所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性。 3、探究活动2:探究三角形的中线:学生在画一画中体会三角形中线的定义,培养学生动脑、动手能力,语言表达能力。 4、探究活动3:探究三角形的角平分线。首先让学生折一折,在动手操作中体会折痕是否平分三角形的内角,之后分小组折叠锐角三角形、直角三角形、钝角三角形的角平分线,小组交流,归纳三角形角平分线的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。从而很好的培养了学生的动手操作和探究能力。 5、练习巩固,深化拓展 先以抢答形式解决问题1、问题2,让学生利用所学知识,进一步巩固三角形的高、中线、角平分线的有关概念,提高学生

11、独立解决问题的能力。拓展练习是一个综合性题目,一方面引导学生从复杂图形中抽取基本图形,从而加强学生对概念的掌握,进一步发展学生的思维,拓展能力,运用以增强直观性。 6、感悟与收获:进一步提升学生对知识点理解。 7、作业布置:让学生运用数学知识解决生活实例,是让学生感受数学和生活的联系及数学在生活中的重要性,充分体现数学于生活又还原于生活。 高中数学说课稿篇2 一、教学背景分析 1、教材结构分析 圆的方程安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线

12、等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。 2、学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。 根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标: 3、教学目标 (1)知识目标:掌握圆的标准方程; 会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; 利用圆的标准方程

13、解决简单的实际问题。 (2)能力目标:进一步培养学生用代数方法研究几何问题的能力; 加深对数形结合思想的理解和加强对待定系数法的运用; 增强学生用数学的意识。 (3)情感目标:培养学生主动探究知识、合作交流的意识; 在体验数学美的过程中激发学生的学习兴趣。 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4、教学重点与难点 (1)重点:圆的标准方程的求法及其应用。 (2)难点:会根据不同的已知条件求圆的标准方程; 选择恰当的坐标系解决与圆有关的实际问题。 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 二、教法学法分析 1、教法分析为了充分调动学生学习的积极

14、性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。 2、学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明: 三、教学过程与设计 整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节: 创设情境启迪思维深入探究获得新知应用举例巩固提高 反馈训练形

15、成方法小结反思拓展引申 下面我从纵横两方面叙述我的教学程序与设计意图。 首先:纵向叙述教学过程 (一)创设情境启迪思维 问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道? 通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。

16、这样获取的知识,不但易于保持,而且易于迁移。 通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。 (二)深入探究获得新知 问题二1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程? 2、如果圆心在,半径为时又如何呢? 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。 得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第

17、三环节。 (三)应用举例巩固提高 I、直接应用内化新知 问题三1、写出下列各圆的标准方程: (1)圆心在原点,半径为3; (2)经过点,圆心在点。 2、写出圆的圆心坐标和半径。 我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。 II、灵活应用提升能力 问题四1、求以点为圆心,并且和直线相切的圆的方程。 2、求过点,圆心在直线上且与轴相切的圆的方程。 3、已知圆的方程为,求过圆上一点的切线方程。 你能

18、归纳出具有一般性的结论吗? 已知圆的方程是,经过圆上一点的切线的方程是什么? 我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。 III、实际应用回归自然 问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m

19、,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。 我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。 (四)反馈训练形成方法 问题六1、求过原点和点,且圆心在直线上的圆的标准方程。 2、求圆过点的切线方程。 3、求圆过点的切线方程。 接下来是第四环节反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方

20、程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。 (五)小结反思拓展引申 1、课堂小结 把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 圆心为,半径为r的圆的标准方程为: 圆心在原点时,半径为r的圆的标准方程为:。 已知圆的方程是,经过圆上一点的切线的方程是:。 2、分层作业 (A)巩固型作业:教材P81-82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点

21、的切线方程。 3、激发新疑 问题七1、把圆的标准方程展开后是什么形式? 2、方程表示什么图形? 在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。 以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计 (一)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重

22、要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。 第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。 (二)学生主体教师主导探究主线 本节课的设计用问

23、题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。 (三)培养思维提升能力激励创新 为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向

24、挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。 以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。 高中数学说课稿篇3 一、教材地位与作用 本节知识是必修五第一章解三角形的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也

25、时常考一些解答题。因此,正弦定理的知识非常重要。 二、学情分析 作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标 教学目标分析: 知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。 能力目标:探索正弦定理的证明过程,用归纳法得出结论。 情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用

26、价值。 三、教法学法分析 教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。 学法:指导学生掌握“观察猜想证明应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。 四、教学过程 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就

27、意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,A=47,B=53,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 (二)探寻特例,提出猜想 1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。 3.让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系 这为下一步证明树立信心,不断的使学生对结论的认识

28、从感性逐步上升到理性。 (三)逻辑推理,证明猜想 1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。 (四)归纳总结,简单应用 1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3.运用正弦定理求解本节课引入的三角形

29、零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 (五)讲解例题,巩固定理 1.例1:在ABC中,已知A=32,B=81.8,a=42.9cm.解三角形。 例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2.例2:在ABC中,已知a=20cm,b=28cm,A=40,解三角形。 例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。 (六)课堂练习,提高巩固 1.在ABC中,已知下列条件,解三角形。 (1)A=45,C=30

30、,c=10cm(2)A=60,B=45,c=20cm 2.在ABC中,已知下列条件,解三角形。 (1)a=20cm,b=11cm,B=30(2)c=54cm,b=39cm,C=115 学生板演,老师巡视,及时发现问题,并解答。 (七)小结反思,提高认识 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用向量证明了正弦定 理,体现了数形结合的数学思想。 2.它表述了三角形的边与对角的正弦值的关系。 3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。 (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般

31、,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。) (八)任务后延,自主探究 如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。 高中数学说课稿篇4 高中数学第三册(选修)第一章第2节第一课时 一、教材分析 教材的地位和作用 期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今

32、后学习数学及相关学科产生深远的影响。 教学重点与难点 重点:离散型随机变量期望的概念及其实际含义。 难点:离散型随机变量期望的实际应用。 理论依据本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。 二、教学目标 知识与技能目标 通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。 会计算简单的离散型随机变量的期望,并解决一些实际问题。 过程与方法目标 经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理

33、能力。 通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。 情感与态度目标 通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。 三、教法选择 引导发现法 四、学法指导 “授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。 五、教学的基本流程设计 高中数学第三册离散型随机变量的期望说课教案.rar 高中数学说课稿篇5 一、教材分析 本节是人教A版高中数学必修三第二章统计中的第三节“变量间的相关关系”的第二课时。在上一课时,学生已经懂得根据

34、两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。 从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。 二、教学目标 根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下: 知识与技能: 1.知道最小二乘法和回归分析的思想; 2.能根据线性回归方程系数公式求出回归方程 过程与方法: 经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。 情感态度与价值

35、观 通过合作学习,养成倾听别人意见和建议的良好品质 三、重点难点分析: 根据目标分析,确定教学重点和难点如下: 教学重点: 1.知道最小二乘法和回归分析的思想; 2会求回归直线 教学难点: 建立回归思想,会求回归直线 四、教学设计 提出问题 理论探究 验证结论 小结提升 应用实践 作业设计 教学环节 内容及说明 创设情境 探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 问题与引导设计 师生活动 设计意图 问题1.利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关? 教师提问,学生 通过动手操作得 出散点图并回答 以旧“探”新:对旧的知识进行简要的提问复

36、习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。 教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2. 问题2.甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲, 乙,丙三个同学的判断有什么看法? 学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一 该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问

37、题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。 问题3.反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多 在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题 通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。 学生可能提出的问题: 为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小? 某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢? 这些样本数据揭示出两个

38、相关变量之间怎样的关系呢? 怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果 高中数学说课稿篇6 说课内容:普通高中课程标准实验教科书(人教A版)数学必修4第二章第四节“平面向量的数量积”的第一课时-平面向量数量积的物理背景及其含义。 下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。 一、背景分析 1、学习任务分析 平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课

39、时主要研究数量积的坐标运算,本节课是第一课时。 本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。 2、学生情况分析 学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等

40、物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。 二、教学目标设计 普通高中数学课程标准(实验)对本节课的要求有以下三条: (1)通过物理中

41、“功”等事例,理解平面向量数量积的含义及其物理意义。 (2)体会平面向量的数量积与向量投影的关系。 (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的

42、载体。 综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为: 1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义; 2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律, 并能运用性质和运算律进行相关的运算和判断; 3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。 三、课堂结构设计 本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学: 即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生

43、进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。 四、教学媒体设计 和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的.设想主要有以下两点: 1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。 2、设计科学合理的板书(见下),一方面使学生加深对主要知识

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁