2019-2020学年高考数学一轮复习《三角函数》教案.doc

上传人:知****量 文档编号:13078078 上传时间:2022-04-27 格式:DOC 页数:6 大小:441KB
返回 下载 相关 举报
2019-2020学年高考数学一轮复习《三角函数》教案.doc_第1页
第1页 / 共6页
2019-2020学年高考数学一轮复习《三角函数》教案.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2019-2020学年高考数学一轮复习《三角函数》教案.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高考数学一轮复习《三角函数》教案.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、考纲导读第六章 三角函数1了解任意角的概念、 弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、计算问题知识网络任意角的三角函数三 角 函 数两角和与差的三角函数三角函数的图象和性质角的概念的推广、弧度制任意角的三角函数的定义同角三角函数基本关系诱导公式两角和与差的正弦、余弦、正切二倍角的正弦、余弦、正切ysinx, ycosx的图象和性质ytanx的图象和性质yAsin(x)的图象已知三角函数值求角高考导航三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1降低了对三角函数恒

2、等变形的要求,加强了对三角函数图象和性质的考查尤其是三角函数的最大值与最小值、周期2以小题为主一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等3更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识2019-2020学年高考数学一轮复习三角函数教案基础过关第1课时 任意角的三角函数二、任意角的三角函数9定义:设P(x, y)是角终边上任意一点,且 |PO| r,则sin ; cos ;tan ;+cosx, sinx, tanx, xy

3、OxyOxyO10三角函数的符号与角所在象限的关系:12、正弦、余弦、正切、余切函数的定义域和值域:解析式ysinxycosxytanx定义域值 域13三角函数线:在图中作出角的正弦线、余弦线、正切线xyO典型例题例1. 若是第二象限的角,试分别确定2, ,的终边所在位置.解: 是第二象限的角,(1)2k360+18022k360+360(kZ),2是第三或第四象限的角,或角的终边在y轴的非正半轴上.(2)k180+45 k180+90(kZ),当k=2n(nZ)时,n360+45n360+90;当k=2n+1(nZ)时,n360+225n360+270.是第一或第三象限的角.(3)k120+

4、30k120+60(kZ),当k=3n(nZ)时,n360+30n360+60;当k=3n+1(nZ)时,n360+150n360+180;当k=3n+2(nZ)时,n360+270n360+300.是第一或第二或第四象限的角.变式训练1:已知是第三象限角,问是哪个象限的角?解: 是第三象限角,180+k360270+k360(kZ),60+k12090+k120.当k=3m(mZ)时,可得60+m36090+m360(mZ).故的终边在第一象限.当k=3m+1 (mZ)时,可得180+m360210+m360(mZ).故的终边在第三象限.当k=3m+2 (mZ)时,可得300+m360330

5、+m360(mZ).故的终边在第四象限.综上可知,是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角的终边的范围,并由此写出角的集合:(1)sin;(2)cos.解:(1)作直线y=交单位圆于A、B两点,连结OA、OB,则OA与OB围成的区域即为角的终边的范围,故满足条件的角的集合为|2k+2k+,kZ .(2)作直线x=交单位圆于C、D两点,连结OC、OD,则OC与OD围成的区域(图中阴影部分)即为角终边的范围.故满足条件的角的集合为 .变式训练2:求下列函数的定义域:(1)y=;(2)y=lg(3-4sin2x).解:(1)2cosx-10,cosx.由三角函数线画出x满

6、足条件的终边范围(如图阴影所示).x(kZ).(2)3-4sin2x0,sin2x,-sinx.利用三角函数线画出x满足条件的终边范围(如右图阴影),x(k-,k+)(kZ).例3. 已知角的终边在直线3x+4y=0上,求sin,cos,tan的值.解:角的终边在直线3x+4y=0上,在角的终边上任取一点P(4t,-3t) (t0),则x=4t,y=-3t,r=|t|,当t0时,r=5t,sin=,cos=,tan=; 当t0时,r=-5t,sin=,cos=,tan=. 综上可知,t0时,sin=,cos=,tan=;t0时,sin=,cos=-,tan=. 变式训练3:已知角的终边经过点P

7、,试判断角所在的象限,并求的值解:由题意,得 故角是第二或第三象限角当,点P的坐标为,当,点P的坐标为,例4. 已知一扇形中心角为,所在圆半径为R(1) 若,R2cm,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C0),当为何值时,该扇形面积最大,并求此最大值解:(1)设弧长为l,弓形面积为S弓。 (cm2)扇形周长 当且仅当224,即2时扇形面积最大为变式训练4:扇形OAB的面积是1cm2,它的周长是4cm,求中心角的弧度数和弦长AB解:设扇形的半径为r,弧长为l,中心角的弧度数为则有 由|得2 |AB|2sin 1( cm )小结归纳1本节内容是三角函数的基础内容,也是后续结论的根源所在,要求掌握好:如角度的范围、函数的定义、函数值的符号、函数值的大小关系及它们之间的相互转化关系2在计算或化简三角函数的关系式时,常常要对角的范围以及相应的三角函数值的正负情况进行讨论,因此,在解答这类题时首先要弄清:角的范围是什么?对应的三角函数值是正还是负?与此相关的定义、性质或公式有哪些?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁