2019-2020年(秋)九年级数学上册-2.5-一元二次方程的应用教案2-(新版)湘教版.doc

上传人:知****量 文档编号:13075074 上传时间:2022-04-27 格式:DOC 页数:6 大小:116KB
返回 下载 相关 举报
2019-2020年(秋)九年级数学上册-2.5-一元二次方程的应用教案2-(新版)湘教版.doc_第1页
第1页 / 共6页
2019-2020年(秋)九年级数学上册-2.5-一元二次方程的应用教案2-(新版)湘教版.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2019-2020年(秋)九年级数学上册-2.5-一元二次方程的应用教案2-(新版)湘教版.doc》由会员分享,可在线阅读,更多相关《2019-2020年(秋)九年级数学上册-2.5-一元二次方程的应用教案2-(新版)湘教版.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019-2020年(秋)九年级数学上册 2.5 一元二次方程的应用教案2 (新版)湘教版教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知

2、数以及它们之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;(3)列方程:根据题中已知量和未知量之间的关系列出方程;(4)解方程:求出所给方程的解;(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;(6)作答:根据题意,选择合理的答案.2.说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1.思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四

3、个小正方形的边长.(1)引导学生审题,弄清已知数、未知数以及它们之间的关系;(2)确定本题的等量关系是:盒子的底面积=盒子的底面长盒子的底面宽;(3)引导学生根据题意设未知数;(4)引导学生根据等量关系列方程;(5)引导学生求出所列方程的解;(6)检验所求方程的解合理性;(7)根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位.2.如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形

4、变为规则图形,进而即可列出方程,求出答案还要注意根据题意考虑根的合理性,从而确定根的取舍本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案解:设道路宽为x米(32-x)(20-x)=540解得:x1=2,x2=50(不合题意,舍去)x=2答:设道路宽为2米3.如图所示,在ABC中,C=90,AC=6cm.BC=8cm,点P沿AC边从点A向终点C以1cm/s的速度移动,同时点Q沿CB边从C向终点B以2cm/s的速度移动,且当其中一点达到终点时,另一点也随之停止移动,问点P、Q出发几秒后,可使PCQ的

5、面积为9cm2?解:设xs后,可使PCQ的面积为9cm2由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm则1/2(6x)2x=9整理,得x2-6x+9=0,解得x1=x2=3所以P、Q同时出发,3s后可使PCQ的面积为9cm2【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解1.如图,某中学为方便师生活动,准备在长30m,宽20m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为32,若使余下的草坪面积是原来草坪面积的四分之三,若横路宽为3xcm,则可列方程为.分析:若设小路的横路宽为3xm,则纵路宽为2xm,我们利用“图形经过

6、移动,它的面积大小不会改变”的道理,把纵、横四条路移动一下(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),则余下的草坪面积可用含x的代数式表示为(30-4x)(20-6x)m2,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程.则可列方程:(304x)(206x)=3/43020【答案】 (30-4x)(20-6x)=3/430202.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C

7、.x2-130x-1400=0D.x2-65x-350=0【答案】 B3.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?解:(1)设所围矩形ABCD的长AB为x米,则宽AD为12(80-x)米依题意,得x1/2(80-x)=750即,x2-80x+1500=0,解此方程,得x1=30,x2=50墙的长度不超过45m,x2=50不合题意,应舍去当x=30时,1/2(80-x)=1/2(80-30)=25,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2

8、(2)不能因为由x1/2(80-x)=810得x2-80x+1620=0又b2-4ac=(-80)2-411620=-800,上述方程没有实数根因此,不能使所围矩形场地的面积为810m24.如图,在一幅矩形地毯的四周镶有宽度相同的边如图,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米求花边的宽分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)(矩形图案的宽+两个花边的宽)=地毯的面积解:设花边的宽为x米,根据题意得(2x+6)(2x+3)=40,解得x1=1,x2=-11/2,x2=-11/2不合题意,舍去答:花边的宽为1米5.我

9、校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m,另一边减少了2m,使剩余的空地面积为12m2,求原正方形的边长分析:本题可设原正方形的边长为xm,则剩余的空地长为(x-1)m,宽为(x-2)m根据长方形的面积公式方程可列出,进而可求出原正方形的边长解:设原正方形的边长为xm,依题意有(x-1)(x-2)=12整理,得x2-3x-10=0(x-5)(x+2)=0,x1=5,x2=-2(不合题意,舍去)答:原正方形的边长5m6.小明家有一块长8m,宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如

10、图的方案,求图中的x值解:据题意,得(8-x)(6-x)=1/286解得x1=12,x2=2x1不合题意,舍去x=2【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第3、4、7题.教学反思本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题.这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运.既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁