《2019-2020学年八年级数学下册-18.2-平行四边形的判定学案2-(新版)华东师大版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年八年级数学下册-18.2-平行四边形的判定学案2-(新版)华东师大版.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019-2020学年八年级数学下册 18.2 平行四边形的判定学案2 (新版)华东师大版一、学习目标1.掌握用对角线互相平分来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题二、学习重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法三、自主预习1.平行四边形的判定方法有那些?ABCDO2. 证明:对角线互相平分的四边形是平行四边形已知:如图,在 中,AO=CO,BO=DO,求证: . 证明: 3.几何语言表述:AO=CO,BO=DO 四边形ABCD是平行四边形.四、合作探究1.已知:如图四边形 ABCD的对角线AC、BD交于点O,E、F是AC
2、上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明(你还有其它的证明方法吗?比较一下,哪种证明方法简单.)2.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BMDN,且BM=DN. 五巩固反馈【基础知识练习】第3题图1.已知:在四边形ABCD中,ADBC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).2.在ABCD中,BECD,BFAD,垂足分别为E、F,EBF=60AF=3,CE=4.5,则C= ,AB= ,BC= .3.如图所示,在ABCD
3、中,E、F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据 来证明.3. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为_.【提高拓展练习】第4题图4.已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.第5题图5.如图所示,BD是ABCD的对角线,AEBD于E,CFBD于F,求证:四边形AECF为平行四边形. 【中考考点链接】6如图,E、F分别是ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ) A 2个 B 3个 C 4个 D 5个7ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(1,2),则C点的坐标为( )A (1,2)B (2,1)C (1,3)D (2,3)六、学后反思编号04:巩固反馈:1.ABCD或AD=BC;2.60、2 、9;3.对角线互相平分的四边形是平行四边形;4.证明略;5.证明略;6.C;7.A.编号04:巩固反馈:证明略.