2019-2020学年八年级数学上册-因式分解教案2-新人教版.doc

上传人:知****量 文档编号:13026840 上传时间:2022-04-27 格式:DOC 页数:3 大小:86KB
返回 下载 相关 举报
2019-2020学年八年级数学上册-因式分解教案2-新人教版.doc_第1页
第1页 / 共3页
2019-2020学年八年级数学上册-因式分解教案2-新人教版.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《2019-2020学年八年级数学上册-因式分解教案2-新人教版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年八年级数学上册-因式分解教案2-新人教版.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019-2020学年八年级数学上册 因式分解教案2 新人教版教学目标1使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系2使学生理解提公因式法并能熟练地运用提公因式法分解因式3通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.教学重点及难点教学重点:因式分解的概念及提公因式法教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系教学过程设计:一、复习提问乘法对加法的分配律二、新课1新课引入:用类比的方法引入课题在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数)例如,把15分解成35,把42分解成237

2、在前面我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法2因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果(老师按学生所说在黑板写出几个)如:m(a+b+c)ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)a2-b2(a+b)(m+n)am+an+bm+bn(x-5)(2-x)-x2+7x-10 等等再请学生观察它们有什么共同的特点?特点:左边,整式整式;右边,是多项式可见,整式乘以整式结果是多项式,而多项式

3、也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式如:因式分解:ma+mb+mcm(a+b+c)整式乘法:m(a+b+c)ma+mb+mc让学生说出因式分解与整式乘法的联系与区别联系:同样是由几个相同的整式组成的等式区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式例1 下列各式从左到右哪些是因式分解?(投影)(1)x2-xx(x-1) ()(2)a(

4、a-b)a2-ab ()(3)(a+3)(a-3)a2-9 ()(4)a2-2a+1a(a-2)+1 ()(5)x2-4x+4(x-2)2 ()下面我们学习几种常见的因式分解方法3提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式注意:公因式是各项都含有的公共的因式又如:a是多项式a2-a各项的公因式ab是多项式5a2b-ab2各项的公因式2mn是多项式4m2np-2mn2q各项的公因式根据乘法的分配律,可得m(a+b+c)ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mcm(a

5、+b+c)这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法显然,由定义可知,提公因式法的关键是如何正确地寻找公因式让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式: (1)ax+ay+a (a)(2)3mx-6mx2 (3mx)(3)

6、4a2+10ah (2a)(4)x2y+xy2 (xy)(5)12xyz-9x2y2 (3xy)例3 把8a3b2-12ab3c分解因式分析:分两步:第一步,找出公因式;第二步,提公因式先引导学生按确定公因式的方法找出多项式的公因式4ab2解:8a3b2-12ab3c=4ab22a2-4ab23bc=4ab2(2a2-3bc)说明:(1)应特别强调确定公因式的两个条件以免漏取(2)开始讲提公因式法时,最好把公因式单独写出以显提醒;强调提公因式;强调因式分解 例4 把3x2-6xy+x 分解因式分析:先引导学生找出公因式x,强调多项式中x=x1解:3x2-6xy+x=x3x-x6y+x1x(3x

7、-6y+1)说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项课堂练习:(投影)把下列各式分解因式:(l)2R+2r;(2)(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy例5 把-4m3+16m2-26m分解因式分析:此多项式第一项的系数是负数,与

8、前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提-号时,注意添括号法则解:-4m3+16m2-26m-(4m3-16m2+26m)-2m(2m2-8m+13)说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式课堂练习:(投影)把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(6)(三)小结1因式分解的意义及其概念2因式分解与整式乘法的联系与区别3公因式及提公因式法4提公因式法因式分解中应注意的问题六、作业七、板书设计

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁