《2019年八年级数学下册-3.3-中心对称导学案(新版)北师大版.doc》由会员分享,可在线阅读,更多相关《2019年八年级数学下册-3.3-中心对称导学案(新版)北师大版.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019年八年级数学下册 3.3 中心对称导学案(新版)北师大版学习 目标1、记住中心对称、对称中心的概念。2、记住中心对称的性质并能运用解题。学习重难 点中心对称、对称中心的概念。中心对称的性质并能运用解题。旧知识链 接下列图形是不是旋转对称图形?是的话,至少需要旋转多少度?问题探究达标测试新知探索归纳1、把一个图形绕着某一点旋转 ,如果它能够和另一个图形 ,那么,我们就说这两个图形 ,这个点叫做对称中心。重点中心对称的含义是:两个图形能够完全重合。重合方式有限制,不是把一个图形平移到另一个图形上面,也不是沿一条直线对折,而是把一个图形绕着某一点旋转180之后与另一个图形重合由此可见中心对称
2、的图形一定全等,而全等的图形不一定中心对称。特征1:关于中心对称的两个图形是全等图形。如图,在中心对称的两个图形中,对称点A、A和中心O在一直线上,并且AOOA,另外分别在一直线上的三点还有_,_;并且BO_,CO_。由此得第二个特征。特征2:在成中心对称的两个图形中,连结对称点的连线都经过 ,并且被对称中心平分。也就是:(1)对称中心在任意两个对称点的连线上。(2)对称中心到一对对称点的距离相等。例如图四边形ABCD和点O,画出四边形ABCD,使它与已知四边形关于点O成中心对称。画法:(1)连结AO并延长AO到A,使OAOA,于是得到点A的对称点A。(2)同样画出点B、点C和点D的对称点B、C和D。(3)顺次连结AB、BC、CD、DA。四边形ABCD即为所求的四边形。3、看课本议一议把一个图形 叫做中心对称图形, 叫做它的对称中心练习:1、 画一个与已知四边形ABCD成中心对称的图形(1)以顶点A为对称中心;(2)以BC边的中点为对称中心2、你学过的平面图形中,哪些图形是中心对称图形?评价我的收获:我的疑惑: