《初中函数知识点总结非常全.doc》由会员分享,可在线阅读,更多相关《初中函数知识点总结非常全.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、. .知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O即公共的原点叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个局部,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用a,b表示,其顺序是横坐标在前,纵坐标在后,中间有“,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,a
2、,b和b,a是两个不同点的坐标。知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限2、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为0,03、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标一样。位于平行于y轴的直
3、线上的各点的横坐标一样。5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p关于x轴对称横坐标相等,纵坐标互为相反数点P与点p关于y轴对称纵坐标相等,横坐标互为相反数点P与点p关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:1点P(x,y)到x轴的距离等于2点P(x,y)到y轴的距离等于3点P(x,y)到原点的距离等于知识点三、函数及其相关概念 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是
4、x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值X围。3、函数的三种表示法及其优缺点1解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。2列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。3图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤1列表:列表给出自变量与函数的一些对应值2描点:以表中每对对应值为坐标,在坐标平面内描出相应的点3连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来
5、。知识点四、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果k,b是常数,k0,那么y叫做x的一次函数。特别地,当一次函数中的b为0时,k为常数,k0。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点0,b的直线;正比例函数的图像是经过原点0,0的直线。k的符号b的符号函数图像图像特征k0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。k0k0 y 0 x图像经过一、二、四象限,y随x的增大而减小b0时,图像经过第一、三
6、象限,y随x的增大而增大,图像从左之右上升;2当k0时,y随x的增大而增大2当k0时,直线与y轴交点在y轴正半轴上4当b0k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值X围是x0, y的取值X围是y0;当k0a0 y 0 x y 0 x 性质1抛物线开口向上,并向上无限延伸;2对称轴是x=,顶点坐标是,;3在对称轴的左侧,即当x时,y随x的增大而增大,简记左减右增;4抛物线有最低点,当x=时,y有最小值,1抛物线开口向下,并向下无限延伸;2对称轴是x=,顶点坐标是,;3在对称轴的左侧,即当x时,y随x的增大而减小,简记左增右减;4抛物线有最高点,当x
7、=时,y有最大值,2、二次函数与一元二次方程的关系二次函数与轴交点情况:一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数: 当时,图象与轴交于两点,其中的是一元二次方程的两根这两点间的距离推导过程:假设抛物线与轴两交点为,由于、是方程的两个根,故 当时,图象与轴只有一个交点; 当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有 记忆规律:一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。当0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当
8、0时,抛物线开口向上;0时,抛物线开口向下;的绝对值越大,开口越小 2和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;即、同号时,对称轴在轴左侧;即、异号时,对称轴在轴右侧. 口诀 - 左同 右异 3的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点0,:,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,那么 .知识点十四、中考点击 考点分析:内容要求1、函数的概念和平面直角坐标系中某些点的坐标特点2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系3、一次函数的概
9、念和图像4、一次函数的增减性、象限分布情况,会作图5、反比例函数的概念、图像特征,以及在实际生活中的应用6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题命题预测:函数是数形结合的重要表达,是每年中考的必考内容,函数的概念主要用选择、填空的形式考察自变量的取值X围,及自变量与因变量的变化图像、平面直角坐标系等,一般占3-6分左右一次函数与一次方程有严密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考察,占6分左右反比例函数的图像和性质的考察常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,36分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题会求一元二次方程的近似值分析近年中考,预计2021年除了继续考察自变量的取值X围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考察对反比例函数的概念及性质的理解同时将注重考察二次函数,特别是二次函数的在实际生活中应用. .word.