最优投资组合理论(ppt 114).pptx

上传人:修**** 文档编号:12900763 上传时间:2022-04-26 格式:PPTX 页数:114 大小:532.99KB
返回 下载 相关 举报
最优投资组合理论(ppt 114).pptx_第1页
第1页 / 共114页
最优投资组合理论(ppt 114).pptx_第2页
第2页 / 共114页
点击查看更多>>
资源描述

《最优投资组合理论(ppt 114).pptx》由会员分享,可在线阅读,更多相关《最优投资组合理论(ppt 114).pptx(114页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章第四章 最优投资组合理论最优投资组合理论 投资过程的两个重要任务: 证券分析和市场分析:评估所有可能的投资工具的风险和期望回报率特性 在对证券市场进行分析的根底上,投资者确定最优的证券组合:从可行的投资组合中确定最优的风险-回报时机,然后决定最优的证券组合最优证券组合理论 选择的目标:使得均值-标准差平面上无差异曲线的效用尽可能的大 选择的对象:均值-标准差平面上的可行集 The optimization technique is the easiest part of the portfolio construction problem. The real arena of compe

2、tition among portfolio managers is in sophisticated security analysis. 证券组合理论的三个根本原理: 投资者厌恶风险,投资在风险证券需要风险酬金 不同投资者对待证券组合风险-期望回报率的态度不同,以效用函数来刻画 正确衡量一个证券的方式是看它对整个证券组合波动的奉献。 Top-down analysis capital allocation decision asset allocation decision security selection decision证券组合选择问题 通过分析资本市场,一个中心的事实是,风险资产

3、的回报平均来说高于无风险资产的回报,而且回报越高,风险越大。 One interesting consequence of having these two conflicting objectives is that the investor should diversify by purchasing not just one security but several. 一期投资模型:投资者在期初投资,在期末获得回报。 一期模型是对现实的一种近似,如对零息债券、欧式期权的投资。虽然许多问题不是一期模型,但作为一种简化,对一期模型的分析是分析多期模型的根底。1. 一些根本概念 回报率 由于期

4、末的收益是不确定的,所以回报率为随机变量。 价格与回报率之间是一一决定的关系,给定价格,就可算出回报率,反过来,给出了回报率,就可决定价格。 在以下的章节里,通常以回报率为研究对象,并假设,字母或者字母上加一波浪线表示随机变量,字母上加一横线表示期望值。 由于违约、通货膨胀、利率风险、再投资风险等不确定因素,证券市场并不存在绝对无风险的证券。 到期日和投资周期相同的国库券视为无风险。 能够进行投资的绝大多数证券是有风险的。 风险 利用回报率的方差或者标准差来度量 期望回报率 利用回报率的期望值来刻画收益率 1.1 证券组合的回报率 假设有 种可得的不同资产,我们把初始财富分成 份,投资到这 种

5、资产上,设 为投资在第i 种资产上的财富, ;如果以比例表示,那么为 , 为 投 资 在 第 i 种 资 产 上 的 财 富 的 份额, ,以 表示第i种资产的回报率,那么到期末,由i产生的收益为 或 者 , 从而该证券组 合的总收益为 , 该证券组合的回报率为n0Wnn0iWniiWW10000WWiii11niiirir1i0W0iWniiiWr101ir1niiirr1 例子:表4-1:计算证券组合的期望回报率 1证券和证券组合的值 证券 在证券组合 每股的初始 在证券组合初始 名称中的股数 市场价格 总投资 市场价值中的份额 A 100 40元 4,000元4,000/17,000=0

6、.2325 B 200 35元 7,000元7,000/17,200=0.4070 C 100 62元 6,200元6,200/17,200=0.3605 证券组合的初始市场价值=17,200元 总的份额=1.0000 在表4-11中,假设投资者投资的期间为一期,投资的初始财富为17200元,投资者选择A、B、C三种股票进行投资。投资者估计它们的期望回报率分别为16.2%,24.6%,22.8%。这等价于,投资者估计三种股票的期末价格分别为46.48元因为(46.48-40)/40=16.2%,43.61元因为43.61-35/35=24.6%,76.14元因为76.14-62/62=22.8

7、%。证券组合期望回报率有几种计算方式,每种方式得到相同的结果。 2利用期末价格计算证券组合的期望回报率 证券 在证券组合 每股的期末 名称中的股数 预期价值 总的期末预期价值 A10046.48元46.48元 100=4,648元 B20043.61元43.61元 200=8,722元 C10076.14元76.14元 100=7,614元 证券组合的期末预期价值=20,984元 证券组合的期望回报率=(20,984元-17,200元)/17,200元=22.00% 在表4-12中,先计算证券组合的期末期望价值,再利用计算回报率的公式计算回报率,即,从证券组合的期末期望价值中减去投资的初始财富

8、,然后用去除这个差。尽管这个例子里只有三种证券,但这种方法可以推广到多种证券。 3利用证券的期望回报率计算证券组合的期望回报率 证券 在证券组合初 证券的 在证券组合的期望 名称始价值中份额 期望收益率 回报率所起的作用 A0.2325 16.2% 0.2325 16.2%=3.77% B0.4070 24.6% 0.4070 24.6%=10.01% C0.3605 22.85 0.3605 22.8%=8.22% 证券组合的期望回报率=22.00% 在表4-13中,把证券组合期望回报率表示成各个股票期望回报率的加权和,这里的权是各种股票在证券组合中的相对价值。 既可以用证券组合中各种证券的

9、数量来表示证券组合,也可以用证券组合中各种证券所占证券组合初始价值的份额来表示证券组合。 在上表中,既可用100,200,100来表示该证券组合,也可用0.2325,0.4070,0.3605来表示。 1.2 证券组合回报率的方差和标准差 方差 标准差22222)(BBABBAAAprVar22222BBBABAAA 例子:对于前面的A,B,C三种证券 这里 表示证券 和 之间的协方差。3131ijijjiPijij 假设A,B,C三种证券的方差-协方差矩阵为 那么证券组合 的方差为0289. 00104. 00145. 00104. 00854. 00187. 00145. 00187. 0

10、0146. 03605. 04070. 02325. 00289. 00104. 00145. 00104. 00854. 00187. 00145. 00187. 00146. 03605. 04070. 02325. 03605. 04070. 02325. 0 证券形成地组合的回报率标准差不大于单个证券回报率标准差的加权平均。 分散化(Diversification) 只要 ,那么两个证券形成地证券组合回报率的标准差小于单个证券回报率标准差的加权平均。 直观解释 只要证券相互之间地相关系数小于1,那么证券形成地证券组合回报率的标准差小于单个证券回报率标准差的加权平均。1 两个证券组合回报

11、率之间的协方差 证券组合1: 证券组合2: 证券组合1、2之间的协方差为321,0289. 00104. 00145. 00104. 00854. 00187. 00145. 00187. 00146. 0321321,321,2.假设 所有风险厌恶者的无差异曲线如图1所示,在均值-标准差平面上,为严格增的凸函数,并且,越在西北方向的无差异曲线,其效用越高。2r1r221rr 1222111,r22,r2,22121rrr 图1:风险回避者的无差异曲线 3. 不具有无风险证券的资本市场中的证不具有无风险证券的资本市场中的证券组合选择券组合选择 假设在无摩擦市场上存在 N 种可交易风险证券,所有

12、资产回报率的期望和方差均有限且期望互不相等。这 N 种可交易风险证券的回报率以向量 表示, 表示期望值向量。 而这N 种可交易风险证券回报率的协方差矩阵以 表示Nrrr,1Nrrr,1V 22122121211,rVarrrCovrrCovrrCovrVarrrCovrrCovrrCovrVarVNNNN 证券组合的期望收益率和方差 给定证券组合 期望回报率 方差 当证券的种类越来越多时,证券组合回报率的方差的大小越来越依赖于证券之间的协方差而不是证券的方差。TN,213.1 可行集 可行集 由N 种可交易风险证券中的任意 K 种形成的证券组合构成的集合称为可行集。 在均值-标准差平面上来刻画

13、可行集。例子:两种证券形成的可行集 假设证券1的期望回报率 ,标准差为 ;证券2的的期望回报率 ,标准差为 。设由证券1、2形成的证券组合 分别有%51r%402%152r21,ABCDEFG11.000.830.670.500.330.170.0020.000.170.330.500.670.831.00%201 证券组合的期望回报率2211rrrp 假设证券1、2收益率的相关系数为 ,那么证券组合回报率的标准差为 每个证券组合回报率的标准差的上、下界 证券组合D: 上界在 =1时到达,下界在 =-1时到达21222116001600400P21400500D证券组合收益率的标准差的上下界P

14、ortfolioLower BoundUpper BoundA20%20%B10%23.33%C026.67%D10%30%E20%33.33%F30%36.67%G40%40%证券组合收益率的标准差的上下界PPrAG下界上界下界%5%3 . 8 分散化导致风险缩小分散化导致风险缩小。 实际的可行集一维双曲线例子; =0,-0.1 AGPrP =-1 =1 =0 =-0.1可行集的方程 假设 =0 ,由1、2两种证券形成的可行集在均值-标准差平面上的表示。 证券组合 的期望回报率 标准差为 通过找出 与 之间的关系21,2211rrrP222221212PPrP222221212122122P

15、PPrrrrrrrr可行集的方程 得到 为一双曲线1002. 004. 008. 022PPrPrP 最小方差证券组合MVP(minimum-variance portfolio)21222116001600400P三种以上证券形成的可行集 可行集的两个重要性质 1只要N 不小于3,可行集对应 于均值-标方差平面上的区域为二维的。 2可行集的左边向左凸。 可行集PrPABCD三种证券形成可行集的例子 三点形成地区域PPr3.2 有效集定理 有效集定理 投资者从满足如下条件的证券组合可行集中选择他的最优证券组合: 1对给定的回报,风险水平最小 2对给定的风险水平,回报最大; 满足上面两个条件的证

16、券组合集称为有效集。 下面分两步把有效集定理应用到可行集上,得到投资者最优的可投资集。3.3 把有效集定理第一条应用到可行集 给定期望回报率,找方差最小的证券组合PrP证券组合前沿PPr 定义:一个证券组合称为前沿证券组合,如果它在所有具有相同期望回报率的证券组合中具有最小方差。 定义:所有前沿证券组合构成的集合称为证券组合前沿。 证券组合前沿的性质 性质1:整个证券组合前沿可以由任何两个前沿证券组合生成。 性质2:前沿证券组合的任何凸组合仍然在证券组合前沿上。 11222CDCArECrpp 证券组合前沿的方程 任意前沿证券组合的回报率的期望和标准差满足如下方程: 在期望-标准差平面上的证券

17、组合前沿CAC1 单个证券与证券组合在均值-标准差平面上的位置3.4 把有效集定理的第二条应用到证券组合前沿 在证券组合前沿上,给定风险,找期望回报率最高的证券组合。PPr有效集和非有效集 最小方差证券组合 定义:比最小方差证券组合回报高的前沿证券组合称为有效证券组合,既不是最小方差证券组合又不是有效证券组合的前沿证券组合称为非有效证券组合。 问题:先利用第二条,再利用第一条,得到的有效集是否一样?3.5 只有两种证券时的特例 假设市场上只存在两种证券A和B。 A具有较高的期望回报率和较高的标准差。相关系数1AB3.5 只有两种证券时的特例 可行集、证券组合前沿和有效集期望回报率 A MVP

18、B 标准差 不同相关系数时的证券组合前沿12 . 005 . 01 相关系数越小,曲线弯曲越厉害。 极限状况 每对证券只有一个相关系数。 当只有两种证券时,可行集与证券组合前沿一致 问题:如果证券 A 的期望回报率高于证券B 的期望回报率,而标准差小于 B 的标准差,这时的可行集、证券组合前沿和有效集是什么?13.6 风险厌恶者的最优证券组合 不存在无风险证券时的风险厌恶者的最优投资策略ppr 不同风险厌恶程度的投资者的最优投资策略ppr Two mutual funds a limited number of portfolios may be sufficient to serve the

19、 demands of a wide range of investors, this is the theoretical basis of the mutual fund industry.4. 具有无风险证券的资本市场中的证券组合选择 Top-down analysis 对大多数投资者而言,货币市场基金是最容易获得的无风险资产。 买卖债券只不过是手段,而实质是存在无风险借贷的市场。 假设在无摩擦市场上存在 N 种可交易风险证券和一种无风险证券。以 表示无风险利率。fr步骤 首先利用例子分三步讨论: 只允许购置无风险债券 只允许卖出无风险债券 可以自由交易 其次,推广到一般情形4.1 只允

20、许购置无风险债券 例子:前面的A,B,C三种证券 期望回报率向量为 把无风险债券当作第4种证券,无风险利率为228. 0246. 0162. 0r%44r 方差-协方差矩阵为0289. 00104. 00145. 00104. 00854. 00187. 00145. 00187. 00146. 0 首先考虑证券A和证券4形成的可行集、证券组合前沿、有效集注意对权的限制 5种证券组合Pportfoliabcde10.000.250.500.751.0041.000.750.500.250.00证券组合的期望回报率和标准差 期望回报率 标准差441rrrAPAP1由证券A和证券4构成的5种证券组

21、合的期望回报率和标准差PortfolioExpected ReturnStandardDeviationa4.00%0. 00%b7.053.02c10.106.04d13.159.06e16.2012.08由证券A和证券4构成的5种证券组合在均值-标准差平面上的图示%4ae 其次,考虑一个证券组合5与证券4形成的可行集、证券组合前沿、有效集。 证券组合5由证券A、C构成 证券组合5的期望回报率、标准差为 20. 0 ,80. 0,CACCAArrr5ACCACCAA2225证券组合5与证券4形成的可行集、证券组合前沿、有效集PPrAC5fr证券组合5从A变到CPPrAC5fr证券A、C、4形

22、成的可行集、证券组合前沿、有效集证券A、B、C、4形成的可行集、证券组合前沿、有效集 最后考虑由A、B、C、4形成的可行集、证券组合前沿、有效集PPrABCfr投资者最优证券组合选择 局部投资在无风险债券上 全部投资在风险证券上4.2 只允许出售无风险债券 首先考虑证券A和证券4形成的可行集、证券组合前沿、有效集注意权的限制 4种证券组合FGHI1.251.501.752.00-0.25-0.50-0.75-1.00由证券A和证券4构成的4种证券组合的期望回报率和标准差PortfolioExpected ReturnStandardDeviationF19.25%15.10%G22.3018.

23、12H25.3521.14I28.4024.16由证券A和证券4构成的9种证券组合在均值-标准差平面上的图示%4aeI 其次,考虑一个证券组合5与证券4形成的可行集、证券组合前沿、有效集。 证券组合5由证券A、C构成 证券组合5的期望回报率、标准差为 20. 0 ,80. 0,CACCAArrr5ACCACCAA2225证券组合5与证券4形成的可行集、证券组合前沿、有效集PPrAC5fr证券组合5从A变到CPPrAC5fr证券A、C、4形成的可行集、证券组合前沿、有效集PPrAC5fr证券A、B、C、4形成的可行集、证券组合前沿、有效集 最后考虑由A、B、C、4形成的可行集、证券组合前沿、有效

24、集PPrABCfr投资者最优证券组合选择 卖出无风险债券 全部投资在风险证券上4.3 无限制的借贷 如何求这个切点4.4 推广到一般情形 N种风险资产形成的证券组合前沿方程 11222CDCArECrppN种风险资产和无风险资产形成的证券组合前沿 N种风险资产和无风险资产形成的证券组合前沿方程 4.5 风险厌恶者的最优投资策略 风险厌恶者的无差异曲线ppr 存在无风险证券时的风险厌恶者的最优投资策略:别离性质ppr 别离性质:无论投资者的风险厌恶如何,他们选择相同的风险证券组合 最优证券组合选择过程可以分成两步: 决定最优风险证券组合 依据风险厌恶的程度在无风险证券和风险证券之间配置资本。 T

25、his result makes professional management more efficient and hence less costly. One management firm can serve any number of clients with relatively small incremental administrative costs.5. Optimal portfolio choice 决定仅由风险证券构成的证券组合前沿 决定由无风险证券和风险证券构成的证券组合前沿 确定最优投资组合 The theories of security selection a

26、nd asset allocation are identical. 实际市场中 每个资产类进行最优投资组合选择,最高管理层决定每个资产类的投资预算。 Passive strategies describes a portfolio decision that avoids any direct or indirect security analysis. The reason the alternative active strategy is not free free-rider benefit Active strategies GIGO the optimization techni

27、que is the easiest part of the portfolio construction problem. The real arena of competition among portfolio managers is security analysis.6. 最优证券组合确实定7.借贷利率不相等的情形8.计算量 10. 市场模型与风险的分散化 市场模型 这里 =在给定的时间区间,证券 i 的回报率 =在同一时间区间,市场指标 I 的回报率 =截矩项 =斜率项 =随机误差项,iIIiIiIirrirIriIiIiI0iIE Beta 值 攻击型股票 防御型股票2IiIiI

28、 风险的分散化 市场风险 唯一风险 分散化导致市场风险的平均化 分散化能够显著地缩减唯一风险。 唯一风险 总风险 市场风险 When we hold diversified portfolios, the contribution to portfolio risk of a particular security will depend on the covariance of that securitys return with those other securities, and not on the securitys variance, this implies that fair risk premium also should depend on covariance rather than total variability of returns.11.Risk-Sharing versus Risk-Pooling

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 财务管理

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁