专题05直角三角形存在性问题-2020年中考数学二轮复习之重难点专题(原卷版).docx

上传人:K**** 文档编号:12865651 上传时间:2022-04-26 格式:DOCX 页数:5 大小:346.60KB
返回 下载 相关 举报
专题05直角三角形存在性问题-2020年中考数学二轮复习之重难点专题(原卷版).docx_第1页
第1页 / 共5页
专题05直角三角形存在性问题-2020年中考数学二轮复习之重难点专题(原卷版).docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《专题05直角三角形存在性问题-2020年中考数学二轮复习之重难点专题(原卷版).docx》由会员分享,可在线阅读,更多相关《专题05直角三角形存在性问题-2020年中考数学二轮复习之重难点专题(原卷版).docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、直角三角形存在性问题例1:如图所示,在中,D、E为线段BC上的两个动点,且(E在D的右边),运动初始时D与B重合,当E与C重合时运动停止,过点E作交AB于F,连接DF,设,如果为直角三角形,求的值.【解答】或【解析】在中,是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况,如果把夹的两条边用含有的式子表示出来,分两种情况列方程就可以了.如图1,作,垂足为H,那么H为BC的中点,在中,由得,即,解得,如图2,当时,由,得,解得;如图3,当时,得,解得.例2:如图,已知直线经过点,与轴相交于点B,若点Q是轴上一点,且为直角三角形,求点Q的坐标.【解答】,【解析】将代入中,解得,如图1

2、,过点A作AB的垂线交轴于,由AB的解析式可得的解析式为,即;如图2,过点B作AB的垂线交轴于,由AB的解析式可得的解析式为,即;如图3,以AB为直径画圆与轴分别交于,作轴,垂足为点E,则,即,解得或3,综上,.巩固练习1.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且,动点P在过A、B、C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得是以AC为直角边的直角三角形,若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.2.如图,在中,点D是AB边上的一个动点,点E与点A关于直线CD对称,连接CE、DE.(1)求底边AB上的高;(2)设CE与AB交于点F,当为直角三角形时,求AD的长;(3)连接AE,当是直角三角形时,求AD的长.3.如图,已知抛物线的顶点为P,与轴相交于A、B两点(点A在点B的右边),点B的横坐标是1.(1)求P点的坐标及的值;(2)如图1,抛物线与抛物线关于轴对称,将抛物线向右平移,平移后抛物线记为,的顶点为M,当点P、M关于点B成中心对称时,求的解析式;(3)如图2,点Q是轴正半轴上一点,将抛物线绕点Q旋转后得到抛物线,抛物线的顶点为N,与轴相交于E、F两点(点E在点F的左边),当以P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁