《2022年新人教版七级数学下册知识点框架总结.docx》由会员分享,可在线阅读,更多相关《2022年新人教版七级数学下册知识点框架总结.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学问框架:第五章 相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移基本概念:1. 邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角;2. 对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角;3. 垂线: 两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线;4. 平行线: 在同一平面内,不相交的两条直线叫做平行线;5. 同位角、内错角、同旁内角:6. 同位角: 1 与 5 像这样具有相同位置关系的一对角叫做同位角;内错角: 2 与 6 像这样的一对角叫做
2、内错角;同旁内角: 2 与 5 像这样的一对角叫做同旁内角;7. 命题: 判定一件事情的语句叫命题;8. 平移: 在平面内, 将一个图形沿某个方向移动肯定的距离,图形的这种移动叫做平移平移变换,简称平移;9. 对应点: 平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点;定理与性质:1. 对顶角的性质:对顶角相等;2. 垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直;性质 2:连接直线外一点与直线上各点的全部线段中,垂线段最短;3. 平行公理: 经过直线外一点有且只有一条直线与已知直线平行;4. 平行公理的推论: 假如两条直线都与第三条直线平行,
3、那么这两条直线也相互平行;5. 平行线的性质:性质 1:两直线平行,同位角相等;性质 2:两直线平行,内错角相等;性质 3:两直线平行,同旁内角互补;6. 平行线的判定:判定 1:同位角相等,两直线平行;判定 2:内错角相等,两直线平行;判定 3:同旁内角相等,两直线平行;第六章 实数学问框架:重难点聚焦:算术平方根和平方根的概念及其求法; 平方根和实数的概念;学问要点回忆:24、实数的三个非负性:|a| 0, a 0, 0( a 0)5 、实数的运算:加减法:类比合并同类项乘法:=(a 0, b 0)除法:( a 0,b 0) 6 、算术平方根与平方根的区分与联系区分 : 定义不同;个数不同
4、;表示方法不同;取值范畴不同 .联系 : 具有包含关系; 存在条件相同;提示: 0 的算术平方根与平方根是 0.1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根; 零的平方根和算术平方根都是零;负数没有平方根2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同3. 全部的实数分成三类:有限小数,无限循环小数,无限不循环小数其中,有限小数和无限循环小数统称有理数, 无限不循环小数叫做无理数4. 无理数分成三类:开方开不尽的数,如,等;有特别意义的数,如 ;有特定结构的数,如0.1010010001 5. 有理数和无理数统称实数,实数和数轴上的点一一对
5、应6. 实数的运算:实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算 正确地确定运算结果的符号和敏捷运用各种运算律来进行运算是把握好实数运算的关键学问框架:第七章 平面直角坐标系有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简洁应用用坐标表示平移基本概念:1. 有序数对: 有次序的两个数 a 与 b 组成的数对叫做有序数对,记做(a,b )2. 平面直角坐标系: 在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系;3. 横轴、纵轴、原点: 水平的数轴称为 x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点;4. 坐标
6、: 对于平面内任一点P,过 P 分别向 x 轴, y 轴作垂线,垂足分别在x 轴, y 轴上, 对应的数 a,b 分别叫点 P 的横坐标和纵坐标;5. 象限: 两条坐标轴把平面分成四个部分,右上部分叫第一象限, 按逆时针方向一次叫其次象限、第三象限、第四象限;坐标轴上的点不在任何一个象限内;学问框架:实际问题设未知数,列方程数学问题(二元或解三元一代次方程)入法方加减法程(消元)实际问题的答案数学组问题的解检验(二元或三元一次方程组的解)基本概念:第八章二元一次方程组1. 二元一次方程: 含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=ca 0,b
7、0 ;2. 二元一次方程组: 把两个二元一次方程合在一起,就组成了一个二元一次方程组;3. 二元一次方程的解:一般地, 使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解;4. 二元一次方程组的解: 一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组;5. 消元: 将未知数的个数由多化少,逐一解决的想法,叫做消元思想;6. 代入消元: 将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程, 实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代 入法;7. 加减消元法: 当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能
8、消去这个未知数,这种方法叫做加减消元法,简称加减法;第九章不等式与不等式组学问框架:实际问题(包含不等关系)设未知数,列不等式(组)数学问题(一元一次不等式(组) 解不等式组实际问题的答案检验基本概念:数学问题的解(不等式(组)的解决)1. 不等式: 一般地,用符号“”“”“”“”表示大小关系的式子叫做不等式;2. 不等式的解: 使不等式成立的未知数的值,叫做不等式的解;3. 不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集;4. 一元一次不等式:不等式的左、 右两边都是整式, 只有一个未知数, 并且未知数的最高次数是 1,像这样的不等式,叫做一元一次不等式;5. 一元一次不
9、等式组: 一般地, 关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组;6. 一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集;定理与性质:1. 不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;2. 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;3. 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变;第十章数据的收集、整理与描述学问框架:全面调查收整描分得制表集绘图理述析出抽样调查数数数数结基本概念:1. 全面调查: 考察全体对象的调查方式叫做全面调查;2. 抽样调查: 调查部分数据,依据部分来估量总体的调查方式称为抽样调查;3. 总体: 要考察的全体对象称为总体;4. 个体: 组成总体的每一个考察对象称为个体;5. 样本: 被抽取的全部个体组成一个样本;6. 样本容量: 样本中个体的数目称为样本容量;7. 频数: 一般地,我们称落在不同小组中的数据个数为该组的频数;8. 频率: 频数与数据总数的比为频率;9. 组数和组距: 在统计数据时, 把数据依据肯定的范畴分成如干各组,分成组的个数称为组数,每一组两个端点的差叫做组距;