2022年PLC的泡沫塑料自动切片机控制系统设计方案.docx

上传人:Che****ry 文档编号:12794771 上传时间:2022-04-26 格式:DOCX 页数:44 大小:478.90KB
返回 下载 相关 举报
2022年PLC的泡沫塑料自动切片机控制系统设计方案.docx_第1页
第1页 / 共44页
2022年PLC的泡沫塑料自动切片机控制系统设计方案.docx_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《2022年PLC的泡沫塑料自动切片机控制系统设计方案.docx》由会员分享,可在线阅读,更多相关《2022年PLC的泡沫塑料自动切片机控制系统设计方案.docx(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、江苏城市职业学院毕业设计说明书( 2021 届)连云港 (信息工程系)机电一体化07 机电(五)0739010132刘堃李国晓职称助教设计(论文)题目单片机气体测漏仪的设计办 学点 ( 系)专业班级学号学生姓名指导教师2021 年 11 月 1 日江苏城市职业学院教务处制目 录摘要 11 绪论 21.1国内外讨论简况及进展趋势21.1.1 讨论现状 21.1.2 测漏检测的进展方向21.1.3国内外研发的相关产品及应用31.2 常用气体测漏方法31.3 论文主要内容与本文结构1.4 本章小结 652 系统总体设计 62.1 系统整体功能介绍62.1.1 对直压法和差压法的分析62.1.2 本课

2、题的主要工作2.1.3 系统功能块的划分772.2 关键技术挑选 82.2.1 检测掌握模块 82.2.2 人机界面的挑选 92.2.3 串口通讯模块的挑选92.3 系统总体结构设计102.3.1 系统总体工作模型102.3.2 系统的总体框图 11图 2-4 系统总框图 112.4 本章小结 12 3 系统的硬件电路 123.1 压力信号采集电路的设计3.1.1 压力变送器的挑选12123.1.2 A/D 转换器 ADS1110 123.1.3 ADS1110 与单片机的硬件连接153.2 温度信号采集电路的设计3.2.1 温度信号处理电路16163.3 人机界面的设计 193.3.1 键盘

3、输入模块的设计193.4 通讯模块的设计 243.4.1 串口通讯协议 253.5 电磁阀驱动模块的设计283.6 电源模块的设计 283.7 本章小结 294.1 系统主程序流程图及零点漂移的克服304.2 键盘及显示模块的实现314.2.1 键盘输入模块流程324.3 压力、温度信号采集流程334.4 算法的实现 344.4.1 零点漂移的克服算法344.4.2 数字滤波算法4.4.3温度补偿算法35364.5 通讯模块的软件流程364.5.1 自定义软件通讯协议36参4.5.2 校验原理分析 37考文献383.4.2 通讯模块与单片机的接口电路27摘 要现代生产技术的不断进步,对检测手段

4、提出了越来越高的要求;气密性检测作为检测方式的一种,在保证产品质量方面起着越来越重要的作用;特殊是在汽车行业,能否保证汽缸的气密性,直接影响着汽车的性能;随着测漏技术的进展,气体测漏仪的讨论使测漏技术得到了更广泛的应用;传统的测漏方法操作不敏捷,简洁产生误判,而且不利于数据的储备分析;直压式气体测漏由于具有原理简洁、成本较低、便利有用、洁净无污染等优点,在气密性检测领域受到广泛的青睐;本文设计了一种基于干式测漏法直接压力测试法 结合单片机技术的气体测漏仪;利用高精度 A/D 对压力和温度信号进行检测,通过LCD 即时显示采集的压差数据,并供应了通讯接口,便于数据储存和分析;克服了传统方法易受主

5、观因素的影响等缺点,实现了气密性检测的自动化;论文第一阐述了课题 的背景以及讨论现状,对各种气密性检测方法进行了比较;给出了系统的总体 工作模型和总体框图;并按模块化的设计思想分别对系统的硬件电路和软件程 序进行了分析;硬件电路主要包括 :压力信号采集电路、温度信号采集电路、键盘及显示电路、电磁阀驱动电路、电源电路和掌握电路的设计和原理分析;软 件设计主要包括 :主程序的实现、键值的输出采集、液晶标准接口的读写、虚拟I2C 总线的实现、零点漂移的克服以及自定义通讯协议的实现;同时,给出了各程序模块的设计思想和流程图;最终依据试验结果,对试验数据进行分析, 得出了系统的精度;总结了本文的特点及不

6、足,为快速性测量供应了现实依据;关键词: 测漏仪,单片机检测,自动化,人机界面1 绪论现代生产技术的不断进步,对检测手段也提出了越来越高的要求;气密性检测作为检测方式的一种,在保证产品质量方面起着越来越重要的作用;特殊是在汽车行业,能否保证气缸的气密性,直接影响着汽车的性能;随着测漏技术的进展,气体测漏仪的讨论使测漏技术得到了更广泛的应用,如何快速检测泄漏又称气密性试,长期以来始终是科研和实践领域的重要课题;泄漏检测也称密封性检测,属性能指标范畴,主要用于测试被测件的气密性状态;国内外广为采纳的方法为水没法,又称湿式检测法,就是将充入肯定压力气体的工件浸没在水中然后由人工观看的方法,判定是否有

7、气泡产生,并由气泡产的多少估量其泄漏程度;这种方法虽然不需要操作人员较高的技术, 且不需要配备特殊设备,且仍能精确找出泄漏位置,但是由于人的主观性因素的影响很简洁产生误判,不能实现自动化效率很低,不能实现对泄漏的定量的判定浸水后需对工件做表面处理,防腐,烘干等处理,这样就加大了测量所需的费用很多对气密性有要求的产品,不能够采纳气泡法进行测量,因此,迫切需要一种更好的方法来代替它,利用气体的性质来检测气密性的方法,就是现在常用的干式检漏法;由于泄漏造成被测件内气体质量削减,这样必定引起被测件内气体的一些参数发生变化;可以对这些参数进行定性和定量的分析,从而判定出泄漏量;其中最为常用的两种方法就是

8、直接压力法和差压法,它们都是以压缩空气来代替真实介质,对被测工件充气加压或抽真空介质为空气,然后对其压力或差压与比较容器之间进行取样分析,从而判定工件是否泄漏,这种方法清洁、无污染,而且简洁易行,给实际生产生活带来了极大的便利,得到了肯定的推广;1.1 国内外讨论简况及进展趋势1.1.1 讨论现状日前测漏仪的种类很多,而且应用也越来越广泛,在我们生产生活中的很多领域都有应用;测漏技术的进展对我们产品质量的提高有着很大的促进作 用,同时提高了工作效率,节约了大量的人力物力,在泄漏测量自动化方面实现了质的飞跃;当前国外一些厂家在技术上较为成熟一些,例如,日本、法 国、美国等在技术上具有较大的优势;

9、而且他们的产品的性能也好一些,精度也要高一些;国内目前也有一些生产测漏仪的厂家,虽然在测漏仪方面,技术比较成熟,而且推出了很多新产品,但是很多技术主要来自国外,比如天津的福田公司、浙江的三花集团;它们的测量效率较低,很难应用在生产线上,如何实现测量的快速性问题,是当前气体测漏仪所要解决的首要问题;1.1.2 测漏检测的进展方向目前气压法测漏仪,技术上仍存在着很多问题,仍需要不断进展和完善;从检测性质的本身来看,进展方向主要在于如何缩短测量时间,提高测量精 度,降低产品价格,再就是如何确定泄漏的位置;目前仍没有一种好的方法来确定泄漏的位置,一般仍是采纳测量精度较高的气泡法,仍可以判定出泄漏的位置

10、;仍有一些厂家用特殊气体来检测泄漏位置,但是特殊气体泄漏会造成环境污染;这种采纳特殊气体进行泄漏检测的方法虽然有较高的牢靠性,但是需要采纳价格昂贵的检测仪器;气压法检测由于采纳空气作为检测介质,因此不会产生污染,而且检测便利、不需特殊仪器;考虑提高测量精度的时候,主要分析如何克服外界环境的干扰主要是温度,如何使被测件内部的气流快速趋于稳固;从掌握方法上来看,掌握手段越来越多,如单片机掌握、掌握、运算机掌握等等,测漏仪的操作界面也越来越人性化,而且操作越来越便利;如法国公司的产品,带有显示屏,可以显示容器内的压力变化,同时可以给出测量的泄漏量;1.1.3 国内外研发的相关产品及应用随着测漏技术的

11、进展,气体测漏仪的应用领域也越来越广;从以前的汽车制造业己经进展到了现在的一般日用品德业、家用电器、食品包装、医疗器械等;现在生产气体测漏仪的厂家很多,产品也能满意不同测试条件的要求;(1) )法国 ATEQ公司法国 ATEQ为世界制造气密性测试仪器的先驱,涉及汽车、医药、家电、压铸、包装、阀门、煤气、电子、建筑、航空等领域;它生产的测漏仪能找到零件上导致泄漏的孔的位置,泄漏量使用范畴自10N9 毫升至升 10000 升/ 小时;仍供应了多种检测模式供操作者挑选,使操作界面尽量适和操作者的使用;(2) )美国 USON 的公司美国 USON也生产很多种类型的测漏仪,它的4000 系列供应了多种

12、检测模式,同时考虑到了测漏性能、泄漏量、以及针对实际中不同被测物的容积及泄漏大小供应了相应的产品而且其操作界面特别友好、对操作者要求不高,其4000 系列仍具有较快的测试速度和较高的灵敏度;(3) )日本 COSMOS 的公司日本 COSMOS 的公司空气测漏仪是对气密部品成品进行加压或抽真空后, 通过测出被测件与标准件之间的微小差压来判定是否有泄漏的自动测试器;它 由耐高压的差压传感器,高性能的气动阀等构成真空回路,功能齐全,性能可 靠,能适应各种不同条件下的测试;(4) )浙江三花通产实业有限公司浙江三花通产实业有限公司该公司专业从事泄漏检测仪及其它专用设备的 设计制造和销售;它研制、生产

13、及销售ALT 系列泄漏检测仪、检测专机及自动化泄漏检测线;(5) )福田天津仪器外表公司福田天津仪器外表讨论所承接国内外客户有关空气压测试、掌握等方面的各种开发工程,但自己开发的工程较少,主要引进FUKUDA 公司的技术;1.2 常用气体测漏方法随着测漏技术的进展,测漏仪的种类也越来越多;但在测漏仪的原理方面,主要应分为湿式和干式其中湿式检测法主要是指气泡法,干式检测法主要包括下面提到流量测试法、直接压力测试法、差压测试法、氦气测量方法等;下面对这几种检测原理分别作简洁介绍;1 气泡法 The leak detectingmethod by air bubble传统的测漏方法主要是气泡法;气泡

14、法是指将被测件密封后放入水中,然后观看气泡的产生情形来判定泄漏量的大小的方法;为了能够使测量更加明 显,一般也会向被测件内充入肯定压力的气体;如图1-1 所示:压 力表被测物件空气源水槽图 1-1气泡检测法2 流量测试法 The leak detecting method by air flow meter当气源对被测件充气完毕后,假如被测件有泄漏,整个密封系统就会有气体的流淌,泄漏量与流量相同,用微小流量测试仪就可以测出泄漏量;如图 2 所示:1-微小流量被测件空气源泄露图 1-2流量测试法3 直接压力测试法 The leak detecting method by air pressure

15、 decay加正压或负压后关闭阀门,由压力表或压力传感器、压力开关等测出因被测物泄漏引起的压力下降值;而且由压力的下降值就可以运算泄漏量的大小;这种方法简洁牢靠,使用便利、价格廉价;如图1-3 所示:被测件空气源压力表图 1-3压力检测法(4) 差压测试法 The leak detecting method by air pressure difference 对被测件和标准件同时充入压缩气体,由高精度的差压传感器测出被测件与标准件之间的压力差;在一般情形下首选直接压力法,在精度要求较高的场合才选用差压法;(5) 氦气测量方法 The leak detecting method by heli

16、um mass measurement将混有氦元素的压缩气体充入被测件,且将被测件放入密封容器,通过氦元素检测装置测量密封容器里氦元素的含量来分析被测件泄漏量的大小;这种方法精度比较高,一般用在高精度场合;上述检测方法的测试性能对比见表 1-1:表 1-1 各种检测方法的性能对比序号测试方法自动化检测才能牢靠性寿命适用性经济性气泡检测法不好好不好好特好不太好流量检测法好不好好好好好直压式检测法好不太好好特好不太好好差压式检测法好好好特好特好好氦元素检测法好特好好不太好不太好不好1.3 论文主要内容与本文结构本课题“基于单片机的气体测漏仪的讨论”是对传统气体测漏方法的一种改进和新的尝试,其特色主

17、要在以下几点:一是加入了单片机作为掌握核心;其丰富的外设如键盘输入和液晶显示输出简化了操作人员的操作,便于观看结果,不易产生误判;二是提出了一种二次采集的掌握方法,有效地克服了很多模拟仪器无法克服的零点漂移的问题,提高了系统的测试精度;三是将直接压力测试法与差压测试法集中到一种掌握器中供用户自由选择,便利了不同用户的不同需求;本文分为六部分 :第一章绪论,第一阐述了提出本课题的背景,然后介绍了气体测漏技术的国内外讨论现状,最终介绍了本课题的主要特色;其次章在介绍了系统所要实现的功能和各个功能块的划分,以及关键技术的选者等;提出了本课题的总体设计构想,最终给出了整个系统的整体工作模型和框图;第三

18、章具体介绍了系统硬件电路的设计,分模块的介绍了硬件电路的功能、工作原理、器件的选取等;给出了具体的电路图解,并对其中的相关技术给出了具体的介绍;第四章具体的介绍了系统软件的实现,采纳模块化的设计思想将系统的软件进行功能块的划分,具体的介绍了各个功能块的具体实现,并给出了软件流程图;第五章介绍了试验结果分析,提出了系统的创新点以及进展方向;最终是本文的结论,对全文进行了总结;1.4 本章小结本章概述了气体测漏技术的国内外讨论现状和目前的进展方向;传统的气泡法仍是目前气密性检测的主要手段,检测方式复杂、简洁产生误判、无法实现检测自动化;常用的气体测漏方法仍有流量法、直接压力法、差压法、和氦元素法;

19、气体测漏仪是基于被测件内气体的泄漏必将导致压力的变化而提出的一种新型检测手段;具有便利、无污染等优点;最终提出了课题的主要讨论内容文章结构;2 系统总体设计2.1 系统整体功能介绍2.1.1 对直压法和差压法的分析直接压力法和差压法为目前较为常用的两种方法,它们的测量原理相同, 都是在气体泄漏会导致被测件内压力变化的条件下,基于被测件内压力变化原理进行测量;同时它们之间存在着较大差别,对于直接压力法,随着压力升 高,分解才能降低;而且检出时间长,受温度影响和变形影响大,对于不同的测试压力要求,要采纳适用压力范畴不同的传感器;对于差压法,就不论检测压力多大,均能进行高精度泄漏测量检测;因分解才能

20、高,即使测量时间短也可高效的检出,因此,通过足够长时间的加压稳固,对由气体温度和变形等引起的误差将削减;即使测试压力变化,但由于同时对工件和标准件充气,差压传感器仍能精确工作;从以上比较不难看出,差压法的精度远高于直接压力法,但由于差压法结构复杂,而且仍必需有一个全密封的标准件来协作使用,给测量带来了很大的不便;同时在价格上也比直接压力法高出了很多;因此在我们对测量精度要求不高时我们仍是应当尽量挑选直接压力法,但当我们对精度有较高要求时我们就应当考虑采纳差压法;对于直接压力法和差压法,它们的测量过程基本相 似;都是由充气、平稳、测量和放气四个过程组成;本文重点以直接压力为例来介绍气体测漏的具体

21、实现过程;图给出了测量的四个阶段被测件内的压力变化;直接压力法检测如下列图;测量主要分为四个过程,即充气过程、平稳过程、测量过程和放气过程;当测量开头时,打开电磁阀、对被测件进行充气也就是充气过程,充气过程以设定的压力向被测工件充气,充气阶段终止后,关闭电磁阀,进入平稳阶段;为了在测量阶段获得可重现的测量条件,检测系统在充气后必需经过一段时间的稳固,以便排除被测腔内气流紊乱造成的误差, 以及由检测气体所引起的温度变化;在被测工件中流通的气体为压缩气体,通过电磁阀时会膨胀,冷却,然后再次被压缩,升温;由于温度的变化,也会导致压力的变化在平稳阶段,电磁阀关闭,电磁阀打开;平稳阶段终止时,检测系统内

22、的压力被储存,作为压力的参考值;系统进入测量阶段,假如有气体从被测工件中泄漏出去,必将引起压力下降;在测量阶段,系统通过一段时间的压力降就可以判定工件的泄漏程度,这个过程可以以数字的形式显示出来;当测量阶段终止后将被测件内的气体放掉,这阶段为放气阶段;当放气阶段终止后,就完成了一个检测过程;压力传感器减压阀电磁阀 1电磁阀 2被测件图 2-1直压式气体测漏原理图2.1.2 本课题的主要工作本课题将单片机掌握应用到传统的直接压力式气体测漏仪中,加入了液晶显示和键盘输入等模块,提高了检测过程的自动化水平,减轻了工人的劳动强度,提高了工作效率,并且便利数据的储备和分析,本科题要实现的功能如下用一种简

23、洁高效的方法来检测被测工件的气体泄漏特性高精度压力检测,可以最小检测的压力变化,检测量程为0-20BAR,压力差检测精度为 0.1%将每次检测结果显示并储存,通过通讯接口送上位机以便日后统计,分析零点漂移的克服;2.1.3 系统功能块的划分对以上功能进行分析,可以将系统分成以下三个功能块:(1) )检测掌握模块该部分为整个系统的掌握核心,其主要功能是通过单片机来掌握各个阀门的开关进而完成直接压力测漏,同时利用传感器将系统各个阶段的压力信号和温度信号转变成电压信号,再由单片机通过A/D 接口来进行检测,送单片机进一步判定其泄漏量,进而完成一次完整的检测;(2) )人机界面挑选模块传统的检测手段都

24、是由人来做判定,简洁产生误判;该系统加入液晶显示和键盘输模块,使得输入和输出变得直观且操作简洁;(3) )串口及上位机通讯模块由于每次测量系统都记录了大量的数据,如压力值,检测结果等,这些数据都需要通过通讯接口送入上位机储存以便利日后的分析处理,本模块通过单片机的标准接口将结果数据输出到上位机;2.2 关键技术挑选以上介绍了本课题所要实现的系统功能,并将其分成了三个功能模块,要更好的实现这三个功能模块的功能,需要对实现这些功能的技术进行必要的明白和谨慎的挑选,以下是对这三个功能块的关键技术进行介绍和挑选;2.2.1 检测掌握模块本系统主要采集气体压力,压力传感器主要针对气体介质,因此,为了提高

25、系统的精度应尽量选取高精度的压力传感器;传感器的精度直接影响系统的总体精度,本系统选取的压力传感器为德国进口的高精度压力传感器,其普遍应用于工业的各个领域中,把气体,液体压力转换成正比高线性电信号输出;压力变送器可以用来测量静压和动压,可以测量任何可与不锈钢,或兼容的液体气体介质,按不同的要求可以挑选不同的密封材料,压力气程为一精度满意全量程调剂,是本系统的抱负传感器;在满意系统要求的前提下,元器件的选取应尽量满意高性价比、高牢靠性且通用等原就;在嵌入式系统低端的单片机领域和当今的工业线程应用中,位机仍旧是主流机型;本课题选用了在单片机中最早实现技术的公司的,其为、字节的,足以储备大量的汉字字

26、符码;并具有全双工串行口线,可以便利的与外界进行通讯,满意本系统的各种性能指标要求;2.2.2 人机界面的挑选人机界面主要包括键盘与显示模块;为便于操作人员对该仪器操作,系统设计了键盘输入模块;由于按键的数目较多,系统设计成行列式键盘,键值以扫描方式输入单片机,并采纳可编程芯片来扩展系统的输入输出口线,这样有效解决了单片机输出口线的不足;由于所要显示的汉字较多,且为了便于操作人员观看,本系统采纳大连东显公司生产的字符点阵型液晶来做系统的显示模块;该模块有内部的驱动芯片,供应了与单片机的标准连接电路,使得掌握液晶的显示就犹如掌握外部储备器的读写一样简便;由于具有与、系列相适配的接口,并有专用的指

27、令集,可以实现画面卷动、光标、闪耀、位操作等,足以满意本系统文本显示或图形显示的功能,此外,该液晶可治理的显示缓冲区,并可外接字符发生器,可同时显示行汉字字符,是该系统的抱负显示模块;2.2.3 串口通讯模块的挑选由于需要同上位机进行通信,将侧漏仪采集的数据输出,所以本系统必需供应一个可以上位机进行实时通信的接口,由于系列单片机本身就供应了标准串行接口;所以只需外扩一个驱动芯片如MAX232就可以实现串行通讯的功能;但是为了保证数据的牢靠传输必需挑选一种可行的通讯协议;支持串行通讯的工业协议主要是协议,协议是应用于电子掌握器上的一种通用语言;通过此协议,掌握器相互之间、掌握器经由网络例如以太网

28、和其它设备之间可以通信;它已经成为一通用工业标准;有了它,不同厂商生产的掌握设备可以连成工业网络,进行集中监控;此协议定义了一个掌握器能熟识使用的消息结构,而不管它们是经过何种网络进行通信的;它描述了掌握器恳求拜访其它设备的过程,假如回应来自其它设备的恳求,以及怎样侦测错误并记录;它制定了消息域格局和内容的公共格式;但是本文的通讯主要针对于单片机与上位机之间的通讯,并不是整个网络之间的通讯;如采纳MODBU标S 准协议必将引起资源的铺张,降低通讯效率;所以本系的通讯模块借鉴了MODBU协S 议标准中的 CRC检验码的生成过程设计了一种自定义的通讯协议;自定义协议提高了系统的通信效率又能保证系统

29、的正确传输;2.3 系统总体结构设计2.3.1 系统总体工作模型传统的直压法测漏仪一般不检测温度信号,利用的是平稳阶段温度信号和压力信号基本平稳,这就大大地限制了系统的精度,本系统将温度信号也采集到了系统中,不但提高了系统的精度,同时也为实现快速测量供应了有效的依据;另外传统的直压法测漏仪将压力变送器挑选在被测件与自检阀之间,掌握器一般挑选微机;这就大大限制了仪器的体积和敏捷性;本系统采纳单片机作为掌握器,液晶显示,并将压力变送器的位置择在充气阀和自检阀之间,对外只供应了两个标准的接口;大大的减小了系统的体积,使仪器使用起来便利敏捷;显 示单片机温度变送器压 力 变送器气源过滤器减压阀充气阀自

30、检阀被测件泄露模拟接口排气阀图 2-3 系统总体工作模式型示意图图 2-3所示为基于直接压力法的气体测漏系统的总体工作模型示意图;现将系统的总体工作情形描述如下:(1) )第一打开气源,气体经过过滤器以后变成了纯洁的气体,再经过减压阀以后就等到了一个相对稳固的压力输出;此压力输出依据不同的检测对象而不同;(2) )单片机上电以后第一挑选不同的测试程序进行测试,测试程序的挑选主要依据减压阀输出压力的设定和不同被测件的参数不同;进入测试菜单以后, 当接受到启动检测的信号时就打开充气阀和自检阀对工件进行充气,充气时间终止系统进入平稳等待时间,平稳阶段终止系统开头采集压力传感器和温度传感器的信号进行检

31、测,系统进入检测阶段,检测阶段终止后系统将检测的结果显示到液晶上并保留结果数据,同时打开排气阀将检测气体排出;一次完整的检测过程就终止,系统预备下一次检测;系统的充气时间,平稳时间和测量时间均由测试程序设定;当检测了肯定数量的工件后就可以挑选将一段时间的检测结果输出送给上位机,系统供应了标准的通讯接口;2.3.2 系统的总体框图压力表泄漏阀压缩气源模拟调压器充气阀自检阀被测工件压力变送器温度变送器A/DA/D通信模块AT89S52单 片 机键盘输入液晶显示图 2-4系统总框图图 2-4 给出的只是系统的一个工作模型,图描述的是系统的实际原理框图;对单片机而言,系统要求检测两路模拟量的输入,同时

32、输出两路开关量,并供应了键盘输入接口,液晶显示输出接口和通信接口;2.4 本章小结本章介绍了本系统的设计思想;对直压法和差压法进行分析差压法测量精度高但差压法测量结构复杂、差压传感器成本高直压法测量结构简洁,但是测量过程简洁受到外界的干扰而影响系统的精度;本文在直接压力法的基础上结合了单片机掌握技术大连理仁高校硕士学位论文提出了系统的总体工作模型和总体框图,并依据原理框图分析了传感器、人机界面和串口通讯等关键技术的选取原就;3 系统的硬件电路3.1 压力信号采集电路的设计3.1.1 压力变送器的挑选压力信号的采集是整个系统的核心,压力变送器的精度是影响系统精度的主要因素所以应挑选压力变送器的主

33、要依据就是高精度;要求对系统的微小压力变化就能检测出来;压力变送器的精度直接影响系统的精度,要满意0.1%的压力差检测精度,压力传感器的精度必需更高;而且压力气程必需满意2/20mA 的系统量程范畴;本系统采纳的是德国原装高精度压力变送器DMP33L;I 其压力精度满意0.05%FOC满量程调剂,对外供应标准G1/2 或 G1/4 压力接口,压力气程为2/20mA,输出信号为标准两线制;供电电源为VDC1236,V 典型应用领域为气体掌握系统,过程掌握系统;满意了系统的量程范畴与精度要求;3.1.2 A/D转换器 ADS1110(1) ) A/D 转换器 ADS1110总体介绍A/D 转换器

34、ADS1110是精密的连续自校准A/D 转换器,带有差分输入和高达16 位的辨论率,可每秒采样 8、12 或 128 次以进行转换;片内可编程的增益放大器 PGA;供应高达 8 倍的增益,答应对更小的信号进行测量,并且具有高辨论率;在单周期转换方式中,在一次转换之后自动掉电,在闲暇期间极大地减少了电流消耗;采样速率(sps)表 3-1位数最小码和最大码最小值最大值816-32768327671615-16864163833214-81928191使用需要熟识输出码的运算方式;输出码是一个标量值除电路削波以外,它与两个模拟输入端的压差成比例;输出码限定在肯定数目范畴内,该范畴取决于代表输出码所需

35、要的位数,而的代表输出码所需要的位数又取决于数据速率,如表所示;输出码 (-1) 最小码PGA (Vin)(-Vin)3-1 对V DD最小码的最小输出码、可编程增益放大器的增益设置、 V+与 V-的正负输入电压以及 VDD而言,输出码由以下表达式运算出;本课题选用采样速率 8,输出码位数为 16 位;(2) ) A/D 转换器 ADS1110使用2I C接口2通过一个内部集成电路 I C 接口通信;接口是一个线漏极开路输出接口, 支持多个器件和主机共用一条总线到;总线上的通信通常发生在两个器件之间,其中一个作为主机,另一个从机;主机和从机都能读和写,但从机只能依主机的方向工作;一些器件既可作

36、为主机又可作为从机,但只能作为从机;一条 I2C 总线由两条线路组成 :SDA 数据线和 SCL时钟线; SDA传送数据,SCL 是时钟;全部数据以 8 位为一组,通过总线传送;为了在总线上传送位数据,须在为 SCL低电平常,驱动线至该位的电平为低就说明该位为“0”,为高就说明该位为 “1”;一旦线稳固下来,线被高,然后变低;线上的脉冲以时钟将位 一位一位地移入接收器的移位寄存器中;2IC 总线是双向的,线可用来发送和接收数据;当主机从从机中读取数据时,从机驱动数据线当主机向从机发送数据时,主机驱动数据线主机总是驱动时钟线;绝不会驱动,由于它不能用作主机,在中只是一个输入端;多数时候总线是闲暇

37、的,不发生通信,而且两条线均为高电平;在产生通信时,总线被激活,只有主机才能开头一次通信;为了开头通信,主机在总线上形成一个开头条件,通常只有在时钟线为低电平常,数据线才答应转变状态;假如在钟线为高电平常,数据线转变了状态,就形成一个开头条件,或相反地势成一个停止条件;始条件是当时钟线为高电平常,数据线从高到低的跳变停止条件就是当时钟线为高电平常,数据线从低到高的跳变;在主机发送开头条件以后,它仍会发送一个字节,说明它想与哪一个从机通信,该字节称作地址字节; I2C 总线上的每个器件都有一个特殊的7 位地址以2做出响应;主机以地址字节发送一个地址,并且仍发出一位以说明是对从机读出仍是写入;对于

38、在 I C 总线上发送的每个字节,无论是地址仍是数据,均以一个应答位作为响应;在主机发送完一个字节即8 位数据到从机后,它停止驱动SDA 线,并等待从机对该字节的应答;从机将SDA线拉低以对该字节进行应答,然 后主机发送一个时钟脉冲以对该应答位定时;类似地当主机完成对一个字节的读取时,就将SDA线拉低以对从机做出应答,然后发送一个时钟脉冲对该位定时;在一个应答周期期间,不作应答,只是保持SDA线为高电平;假如器件不在总线上,并且假如主机试图对其寻址,它不会接收到应答信号,由于该地址处没有器件将 SDA线拉低;在主机完成与从机的通信后,它会发出一个停止条件;在发出停止条件后,总线再次闲暇;主机也

39、可发出另一个开头条件,在总线处于激活状态时, 如发出一个开头条件就要求一个重复的开头条件;ADS1110的 I2C 地址2ADS1110的 I C 地址是 1001aaa,其中 aaa 是出厂时的默认设置; ADS1110有 8 种不同的类型,每种类型都有一个不同的I 2C地址;例如, ADS1110A0的地址为 1001000,而 ADS1110A3的地址就为 1001011.对 ADS1110的读操作用户可从 ADS1110中读出输出寄存器和配置寄存器的内容,为做到这一点,要对 ADS1110寻址,并从器件中读出三个字节;前面的两个字节是输出寄存器的内容,第三个字节是配置寄存器的内容,并不

40、总是需要从ADS1110中读取三个字节,假如只需要输出寄存器的内容就只需读两个字节;从ADS1110中读取多于三个字节的值是无效的,从第四个字节开头的全部字节将为FFH; 对 ADS1110的写操作用户可写新的内容至配置寄存器,但不能更换输出寄存器的内容;为了做到这一点,要对 ADS1110寻址以进行写操作,并对 ADS1110写入一个字节;这个字节被写入配置寄存器中,对 ADS1110 写入多个字节到 ADS1110 无效, ADS1110将忽视第一个字节以后的任何输入字节,并且它只对第一个字节做出应答;3.1.3 ADS1110 与单片机的硬件连接图 3-1 与单片机连接电路图图 3-1与

41、单片机连接电路图所示为与单片机连接电路;由于本身没有集成接口电路,因此需要用其接口来模拟实现接口电路,这里选用和两个引脚来模 拟总线的两个引脚: P1.0 作为数据脚,它的作用是由主机和从机来驱动它以传送数据; P1.1 作为时钟引脚,由主机来驱动它,以产生传送数据所需要的时钟信号,时钟信号通过对单片机编程产生;数据线和时钟线都需要上拉电阻,由于总线驱动器是漏极开路驱动器,这些电阻的大小取决于总线的工作速度和总线电容阻值;较高的电阻功耗较低, 但会延长总线的转换时间,限制总线速度阻值较低的电阻,答应总线高速运 转,但功耗较高;长总线的电容高,需要较小的上拉电阻来补偿,电阻不应太小,假如电阻太小

42、,总线驱动器可能不能将总线拉低;上拉电阻的典型值一般为 1k10k ,本课题采纳 10k 上拉电阻;3.2 温度信号采集电路的设计3.2.1 温度信号处理电路铂电阻温度传感器是利用其电阻和温度成肯定函数关系而制成的温度传感器,由于其测量精确度高、测量范畴大、复现性和稳固性好等,被广泛用于中温“范畴的温度测量中;图温度信号处理电路用铂电阻组成的电桥电路被广泛的应用在各种测温电路中,但在这种检测电路中,平稳电桥中以及铂电阻的阻值和温度之间的非线性特性给最终的温度测量来了肯定的误差,所以往往难以达到较高的指标要求;必需使用硬件补偿或软件查表等方法来对系统的非线性进行补偿;软件查表补偿方法可以简化系统

43、硬件电路的复杂度,便利器件的选取等优点;但是查表法来实现非线性补偿大大的增加了系统软件设计的复杂 度,同时对系统精度的提高帮忙有限;本系统采纳非平稳电桥结合模拟校正电路来实现对温度信号的处理,硬件电路简洁牢靠,同时又大大地提高了铂电阻测温的精度,并且考虑到转换器存在肯定的死区,用一个加法器将系统的输出信号提高一个固定的电平;温度采集电路如下列图测温电路采纳典型的铂电阻电桥电路,线制连接;线制可以把导线电阻对测量结果的影响降到最低,连接如图 3-2 所示:图 3-2 温度采集电路测温电路采纳典型的铂电阻电桥电路, 3 线制连接; 3 线制可以把导线电阻对测量结果的影响降到最低,连接如图3-2 所

44、示;铂电阻的温度特性如下 :当温度为 -78 0时:Rt100 13.9080210 3 t0.580210 6t4.273510 12 t24.273510 12 t100 t 33-2623当温度为 0600时:Rt10013.90802100.580210t 3-3本系统主要应用温度在 0 至 100 度的范畴内测温度,所以只考虑铂电阻在0 至 600度范畴内的温度特性;设电桥两端的输出电压分别为V+和 V-,导线电阻为 r , 就:VVccRtR117V2rRt2rVccR1002 r3-43-5R116当 R116=R117=10kR100=10时0 ,放大器的输入电压为 :R100

45、2r3-6VinVV _VccRt R116R100 R1002r由公式 3-6 可以知道系统 3 线制连接可以基本排除导线电阻对测温电路的影响;将式3-4 代入式 3-6 得,其中 :K 10 . 390820 . 39082V CC3-7K 25.80210 5VCCR 116R 1002 r3-8R116R1002r二次项对整个系统的影响很小,但是为了降低其影响,放大电路加入了一个正反馈 R119,其值为 150K;正反馈电阻的加入起到了线性化的作用,降低了二次项对整个系统的影响温度在0 至 100 度之间,放大器的输出 K 与温度的关系可以基本认定为线性的;调整电位器RP103 就可以调剂整个放大器的放大倍数,本系统设定放

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁