《2022年CASBR工艺在制药生产废水处理工程.docx》由会员分享,可在线阅读,更多相关《2022年CASBR工艺在制药生产废水处理工程.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品学习资源CA SBR工艺在制药生产废水处理工程齐勇刚胡景灿 刘梅荣(湖南恒辉环保实业有限公司技术中心,湘潭410081)1 背景介绍株洲千金药业股份有限公司是一九九三年由株洲中药厂改制成立,是中国中成药生产重点企业五十强之一;公司主要产品为妇科千金片、千金胶囊、舒筋活络液等;十多年来,公司保持快速进展势头,一九九八年实现销售1.2 亿元,利润2469万元,人均利税13.7 万元;随着企业经济效益的快速增长,公司为造福社会,于2001 年兴建了全厂废水处理工程;该废水处理站位于株洲市荷塘区金钩山株洲千金药业公司厂区内,占地约700m 2;依据厂方的分流制排水规划,厂区生产废水、生活污水和雨水
2、分管排放, 其中废水处理站只接纳生产废水,设计规模1700m3/d;2 废水设计参数2.1 废水水量该公司生产废水主要来自洗涤、煎煮(洗锅)、片剂和制剂等工序,其中煎煮工序洗锅废水及制剂车间废水污染程度高,洗涤及冷却工段排放废水量大;该公司扩产后日用水水量及废水日处理量估算见表1;扩产后公司生产废水日排放量为 1350m3/d,依据公司远期进展规划,取设计处理废水量为1700 m3/d;表 1 扩产后日用水水量及废水日处理量估算表工程水量洗药用水360 m 3/d洗锅用水50 m3 /d前处理洗衣卫生用水入药用水35 m3 /d35 m3 /d新加制剂用水80m3/d制剂制剂等用水400m3/
3、d造汽用水250 m3 /d动力循环补充用水90 m3/d其它用水50m3/d欢迎下载精品学习资源2.2 废水水质生产废水中的污染物质大致可分水溶性的和水不溶性的两类;水溶性的污染物主要是单宁、生物碱、有机酸、糖类、蒽醌、淀粉等有机物,另外仍有制剂工序引入的无毒色素,片剂车间排放的高分子物质等;水不溶性的污染物主要来自清洗、煎煮等工序,主要是泥沙、植物类悬浮物等;由于是中药制药企业,所以其生产废水中的有毒物质较少,COD 较西药制药废水要低;名 称废水pH5 7合计1350 m3/d废水水质指标见表2;CODmg/LBOD5mg/L表 2废水水质指标SSmg/L石油类 mg/L色度(倍)120
4、0500100015-2.3 处理出水水质标准废水处理后执行国家污水综合排放标准GB8978-96 一级排放标准;为了节省水资源,可以考虑部分处理后的水作为中水回用,为达到中水回用标准,设计时考虑了用砂滤和加氯消毒的方法来提高出水水质;主要回用途径有:1) 浇灌花草,厂区内绿化用水可以全部使用处理后的水;2) 锅炉烟气除尘,必要时可以部分使用处理后水进行锅炉烟气除尘;2.4 处理工艺流程针对上述出水要求,通过必要的试验争论和参考同类废水处理工程的体会,我们选用先进的CA+SBR 工艺(催化水解酸化 +间歇序批式活性污泥反应器);在回用水深度处理方面,考虑在二级处理的基础上,增加砂滤和加氯消毒工
5、艺,使出水水质进一步提高;废水处理工艺流程情形如下(见图1):废水经格栅池和捞毛除渣机除去大颗粒悬浮物后自流进入调剂池,调剂池中放置了废铁屑,通过铁屑在水中的电化学反应对废水中的有机污染物起水解催化作用,再进入水解酸化池;水解酸化池分两 段,第一段布置了曝气装置,必要时可以进行预曝气,对池中废水进行搅拌;水解酸化池出水通过污水提升泵进入SBR 池,经曝气处理后,沉淀;排出沉淀后的上层清水;排水可通过砂滤池滤掉悬浮杂质,也可不通过砂滤池直接经清水池外排;欢迎下载精品学习资源搅拌废水格栅池调剂池水解酸化池提升泵反冲洗水SBR池消毒池砂滤池清水池加氯间排放 / 回用风机房在需要将排水回用时仍可以加消
6、毒药水以提高回用水水质;SBR 池的剩余污泥可以排入集泥池,经污泥浓缩池重力浓缩,压滤机压滤后外运;曝气曝气集泥池污泥污泥浓缩池外运压滤机房图 1 废水处理工艺流程3 废水处理站平面布置和高程布置3.1 平面布置废水处理站位于千金药业公司厂区的东北角,占地面积约750m2;(见图 2) 在设计时,我们实行了SBR 池与调剂水解酸化池竖向布置的方法,将SBR 池建在调剂水解酸化池之上,既节省了占地面积,又利用SBR 池的水位高差保证滗水器的自流排水;同时我们将风机房建在地下,并进行隔声处理,有效的把握了风机运行中产生的噪声污染;1. 格栅池2.SBR 池(下层是调剂水解酸化池)3.集泥井4.污泥
7、浓缩池5.消毒 -砂滤-清水池6.排水明渠7.流量计井8.污泥脱水间9.泵房(下层是风机房,上层是把握化验间)10.消毒加药间图 2废水处理站平面布置图3.2 高程布置在高程布置设计上,利用厂区废水管网出口的高差让废水自流进入从调剂水解酸化池,再利用污水泵做一次提升将水解酸化池出水泵入SBR 池; SBR 池排水欢迎下载精品学习资源以及砂滤过程利用构筑物之间的高差克服水头缺失,使废水自流流淌,参见图3;1. 格栅池2.调剂水解酸化池3.SBR 池 4.集泥井5.消毒池6.砂滤池7.清水池8.污泥浓缩池9.流量计井图 3高程布置图4 主要构筑物4.1 格栅池格栅池尺寸为 4.4 2.4 1.4m
8、3,前部分为栅条间距10mm 的人工粗格栅,后部分设有一台CM2000 型除毛除渣机;格栅池能有效去除各类大体积杂物,为后续处理制造良好条件;4.2 调剂池调剂池尺寸10.0 9.5 5.0m3,池体超高 1.0m,设计水利停留时间HRT=2.54h ,进水接受双层环状穿孔管布水;4.3 水解酸化池水解酸化池尺寸20.0 9.5 5.0m 3,内分两格,池体超高1.0m,有效容积 760m3, 设计水利停留时间HRT=10.7h ,第一格池底布置有微孔曝气头,必要时可以进行曝气搅拌;4.4 SBR池SBR 池尺寸 10.0 9.5 5.5m3,池体超高0.5m,共 3 池;进水接受 ZW150
9、- 180-15 型污水泵从集水井中将废水提升至SBR 池,池中利用环状穿孔管布水;曝气接受 SSR 型罗茨鼓风机,曝气装置选用氧利用率20%以上的 DYW- 型微孔曝气器,每池布置156 个;排水接受 BS250-5000 型滗水器,最大滗水率超过60% , 最大单池周期排水285m3 ;3 个 SBR 池实行交叉间歇的方式运行,设计单池运行周期为 12h,其中进水1.5h,曝气 8.0h,沉淀 1.0h,排水 1.0h,闲置 0.5h,每池每日运行 2 周期, 3 池每日运行 6 周期,最大日处理量为2856=1710m 3;4.5 集泥井集泥井尺寸10.0 1.5 5.0m3,共三池,其
10、底部与调剂池以及水解酸化池连欢迎下载精品学习资源通; SBR 池中的余外污泥通过SBR 池底的排空阀直接排放到集泥井中,逐步累积后利用污泥泵抽至污泥浓缩池;4.6 污泥浓缩池污泥浓缩池尺寸3.51.5 3.3m3,底部为斗状,共2 池;由于实践证明SBR 工艺产生的剩余污泥很少,所以污泥浓缩池设计时没接受一般活性污泥工艺的设计参数;浓缩接受重力浓缩,设计停留时间12 24h,浓缩池上清液通过池壁上的电动阀逐层排出,底部浓缩污泥用螺杆泵抽送至带式污泥压滤机上进行脱水处理;4.7 消毒砂滤清水池消毒砂滤清水池为一体式结构,尺寸9.2 7.5 6.3m3,其中消毒池尺寸9.2 3.5 6.3m 3,
11、砂滤池9.2 2.5 6.3m 3;消毒接受氯片消毒器配置溶液通过在消毒池中与排水的均匀混合到达出水消毒的目的;另外在消毒池上设有增氧机,必要时可以提高出水中的溶解氧含量,进一步提高处理水质;砂滤池接受一般快滤池结构,以 1 20mm 的瓷球为滤料,设计滤速12.4m/h,反冲接受 SBR 池排水反冲, 反冲时间 5min ;操作中, SBR 池排水可依据需要准备是否通过过砂滤池;4.8 泵及风机房泵与风机房平面尺寸10.0 5.24m2,为双层结构;其中风机房设于泵房下的负一层中,内设有供水解酸化池预曝气的HC-100S 型回转风机( 5.11m3/min , 0.5kg/cm 2,7.5k
12、w )一台,供SBR 池曝气的 SSR125 型罗茨鼓风机( 9.19m3/min , 0.59kg/cm 2,15kw ) 3 台,为滗水器汽缸以及污泥压滤机汽缸供应压缩空气的Z-0.025/7 型空气压缩机两台;4.9 污泥脱水间污泥脱水间尺寸9.23 5.24 5.2m3 ,其中设有 PFMA-500 型带式压滤机一台,用于抽送浓缩污泥的G(GS) 35-1 型螺杆泵一台,用于冲洗压滤机的IS50-32-200A 型清洗水泵一台,混凝剂投配装置一套;5 废水处理站运行情形分析欢迎下载精品学习资源5.1 系统运行支配/d,并没有达到设计处理量;因该废水处理站工程2001 年底竣工,经过近半
13、年的调试和试运行,目前已投入正式使用;由于该污水处理站是依据企业远期进展规划设计确定处理水量的,受 企业生产才能限制,目前污水处理量约800 900m 3为接受的是SBR 工艺,运行方式特殊灵敏,所以即使目前进水量不到设计要求的60%,整个生化系统的仍然能够正常运行;具体运行方式如下:只使用三个SBR 池中的两个,每个SBR 池每天运行两周期,每个SBR 池每周期处理水量200 250m 3/d;假如今后水量增大,可以从已运行的量个SBR 池中分出部分活性污泥, 进行运行即可,依据从第一个SBR 池分出部分的活性污泥接种到其次个SBR 池的实践过程来看,新的SBR 池的启动过程很快,从接种污泥
14、到正常以运行大约只要10 天左右,而且不会对分出活性污泥的SBR 池的运行产生不良影响;SBR 工艺之所以能适应水量的大幅变化是由于其接受的是间歇式运行,一个周期中的五个工艺阶段的时间支配都可以依据实际需要灵敏支配,而且每周期的排水量也可以依据需要通过滗水器的滗水深度来确定;依据设计,我们能保证进水量在 200m /d331700m /d 范畴内整个系统都能正常运行,克服了运用传统的连续流式活性污泥法时由于进水水量达不到设计要求而无法正常以运行的缺点;5.2 水质运行情形分析从 2002 年 5 月该废水处理站于正式投入使用以来,出水水质情形较稳固,出水清亮,各项指标均能到达设计要求;水质监测
15、见表3(以 COD 为主要监测指标);原水COD水解酸化池出水COD1#SBR 池出水 COD( mg/L )3#SBR 池出水 COD( mg/L )表 3水质监测结果(月平均值)( mg/L)( mg/L )2002.05623.5498.220.523.32002.06745.3592.622.121.52002.071036.7832.446.245.72002.081059.2796.541.742.12002.091046.2803.442.140.52002.101075.9839.245.445.6欢迎下载精品学习资源运行过程中五六月份曾受企业生产支配影响,部分车间生产不正常,
16、造成进水水量偏少, COD 含量较低;以上监测数据说明,接受CA SBR 工艺对中成药制药废水的处理成效很理想,其中CA (催化水解酸化)阶段对COD 的去除率一般在20%左右, SBR 阶段的 COD 去除率在 95%左右;整个工艺过程对进水水质水量的变化有很大的适应性,抗冲击负荷才能好;5.3 污泥运行情形分析由于 SBR 工艺中曝气过程和沉淀过程是在同一池中完成的,所以不仅能节省基建费用,而且仍省去了一般活性污泥法中的污泥回流系统,简化了操作;该废水 站 SBR 池的活性污泥来源于某污水厂的剩余污泥,通过接种驯化来使其适应中药制药废水的处理,驯化好的污泥呈褐色;在日常的监测中考虑操作的便
17、利性,我们以SBR 池正常水位时池中的污泥沉降 比 ( SV ) 来 表 示 污 泥 量 , 根 据 多次 实 验 得 出 SV=20时 的 污 泥 浓 度 约 为3500mg/L ;在实际运行过程中,我们发觉污泥的增殖性能在SV 15 时较快, SV 20后,污泥的增殖就变得很缓慢(见表3),而且污泥会显现出老化现象,所以我们 将 SBR 污泥池污泥量把握在SBR 池正常水位时SV=20 左右,即 MLSS=3500mg/L 左右;由于污泥在运行过程中不断的老化,所以每天要排出确定量的污泥,依据一段时间的摸索,我们将排泥支配在每天排水终止后,排泥量一般为污泥总量的5% 10% ,即污泥龄约在
18、 10 20d;实践发觉,适时适量的排泥是系统稳固运行的重要保证;假如不准时排泥会造成污泥老化,污泥絮体变碎,沉降性能变差,使出水水质下降;13.5.4 溶解氧把握SBR 池曝气运行中的废水溶解氧含量的变化是确定曝气时间的重要依据;依据现场采样, SBR 池曝气过程废水溶解氧变化曲线见图4,欢迎下载精品学习资源图 4 SBR 池曝气过程废水溶解氧变化曲线我们发觉在实际运行过程中,每天流入废水处理站的废水水质会因生产变化而有所变化,有时变化幅度很大;以进入SBR 池的废水为监测对象,其COD 值一般在600mg/L 1000mg/L 之间,但有时甚至会低于200mg/L ;从图 4 中,我们可以
19、清楚的看到,从水解酸化池进入到SBR 池的废水 DO 值为 0mg/L ,开头曝气后 DO 值增长特殊缓慢,这可能是由于曝气初期曝气废水中有机物染物含量很高,随曝气中氧一进入SBR 池就被活性污泥中的微生物很快消耗掉,此时系统处在缺氧阶段;随着时间的推移,废水中的污染物被活性污泥逐步吸附降解,这时水中的溶解氧开头慢慢上升,水中的绝大部分污染物已被转移至污泥中,系统过渡到富氧阶段,在DO 达到 1.0mg/L 后,其增长速率明显增快;依据实测发觉当DO 上升到 4.5mg/L左右时,其增长速率就会明显降低,这时污染物已被微生物逐步分解;5.5 生物相变化污泥中的微生物以钟虫、轮虫为主,也有少量纤
20、毛虫、鞭毛虫、线虫;运行过程中曾显现豆形虫大量增多,而其他微生物种类很少的状况,这时的污泥絮体显现破裂、沉降性变差;因此,我们定期做污泥微生物镜检来明白污泥中生物相的变 化,依据观看结果来调整曝气量和排泥量以及排泥操作周期;5.6 运行中存在的问题5.6.1 曝气量的把握问题运行过程中存在的主要问题是如何把握曝气量;和传统活性污泥法一样,SBR工艺在曝气过程中也存在随着时间的推移,废水中的有机物染物会不断的被分解掉而使需氧量逐步削减,如何来依据系统实际需氧量来把握曝气量是一个需要解决的问题,由于曝气阶段后期余外的曝气量不但会铺张不必要的能耗,提高废水处理的成本,而且有时会由于过量曝气而使污泥自
21、身分解,使污泥絮体破裂而难以沉淀, 造成出水水质下降;对于这个问题,当前较普遍的解决方法是接受在线监测设备依据即时监测取欢迎下载精品学习资源SBR 池进水 COD ( mg/L )参考曝气时间( h)900 1000800 9006.0 7.05.5 6.0700 8005.0 5.5600 7004.5 5.0400 600 4004.0 4.5 3.5得的数据通过自动化把握系统把握变频风机,来调整曝气量来适应活性污泥系统需氧量的变化;该废水站设计之初曾作过这方面考虑,但因千金公司考虑这样做前期投入将较大而且日后的自动化把握系统爱惜工作较复杂而没有接受;目前我们解决这一问题实行的是体会法,即
22、依据一段时间的运行,来摸索合适的运行参数;依据实际操作得出的运行数据如表 4;表 4 曝气时间运行参考数据注:上述曝气时间指的是一个SBR 池使用一台风量为 9.19m3/min,风压 0.59kg/cm 2,功率 15kw 的罗茨鼓风机曝气时的时间;通过这种方法只能确定合适的曝气时间以保证废水中的有机物充分分解,并不能依据不同时间段生化系统对需氧量的变化来合理支配曝气量;曝气阶段后期的过量曝气问题照旧存在;5.6.2 出水水质变化问题在调试和运行中都曾显现SBR 排水水质周期性变差问题;水质变差主要表达在水色变黄,浊度上升,但一般显现这类情形时COD 上升并不太明显;这种情形一般几周到几个月
23、显现一次,连续时间几天到一周不等;显现这种情形时,往往可发觉在SBR 池长时间沉淀后发觉大块的类似铁锈的膜状物漂浮在水面上;依据分析,我们认为这可能是水解酸化池中的铁屑在催化水解过程中发生电化学氧化仍原反应,生成了 FeOH 3 的胶体使水色变黄,浊度增加;6 工程评判6.1 工程投资和运行成本该废水处理站工程总投资约300 万元;运行成本主要是动力费用固定资产折欢迎下载精品学习资源旧费、设备修理费、药剂费、人工费等;设计阶段我们估算的废水处理成本为0.45元/m3,但由于目前处理水量只有设计处理量的50%,所以使实际测算的处理成本相对提高,约为 0.76 元/m3;6.2 经济效益、环境效益
24、和社会效益经济效益方面,虽然废水处理站的建设花费了企业一大笔资金,今后的运行仍需要企业不断的资金投入,但废水处理站的成功运行可以每年为企业节省因超标排污而交纳的十几万费用,且利用处理后的回用水仍可以为企业节省部分自来水费;在环境效益和社会效益方面,千金药业废水处理站的建成投入运行终止了该厂废水直接排放的历史,废水经处理后出水清亮,水质指标大多优于相关的排放标准,如 COD 一般在 40mg/L 50mg/L ,大大低于一级排放标准中要求的100mg/L ;出水排放到厂区邻近的金钩山村的小河沟中后未对四周环境产生不良影响,有效地爱惜了当地的环境质量;这些都为千金药业公司赢得了良好的社会声誉;作者简介:齐勇刚,男, 1979 年生, 2001 年毕业于湖南农业高校环境工程专业,工学学士;2002 年初参与株洲千金药业股份有限公司废水处理工程的建设,主要负责工艺调试工作;现为广东某环保投资公司工程工程师;欢迎下载