2022年微积分公式大全2 .pdf

上传人:H****o 文档编号:12621400 上传时间:2022-04-25 格式:PDF 页数:14 大小:532.37KB
返回 下载 相关 举报
2022年微积分公式大全2 .pdf_第1页
第1页 / 共14页
2022年微积分公式大全2 .pdf_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2022年微积分公式大全2 .pdf》由会员分享,可在线阅读,更多相关《2022年微积分公式大全2 .pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、导数公式:基本积分表:三角函数的有理式积分:22221sincos11uuxxuu,一些初等函数:两个重要极限:22(tan)sec(cot)csc(sec )sectan(csc )csccot()ln()(ln1)1(log)lnxxxxaxxxxxxxxxxaaaxxxxxa222221(arcsin)11(arccos)11(arctan)11(arc cot)11()xxxxxxxxthxch22222222sectancoscsccotsinsectanseccsccotcsclnln()xxdxxdxxCxdxxdxxCxxxdxxCxxdxxCaa dxCashxdxchxCc

2、hxdxshxCdxxxaCxa22222222tanln coscotln sinsecln sectancscln csccot1arctan1ln21ln2arcsinxdxxCxdxxCxdxxxCxdxxxCdxxCaxaadxxaCxaaxadxaxCaxaaxdxxCaaxCaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin222222222222222222222020 xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln2

3、1)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦.590457182818284.2)11 (lim1sinlim0exxxxxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 14 页 - - - - - - - - - - 三角函数公式:和差化积公式: 积化和差公式:和差角公式:万能公式、正切代换、其他公式:倍角公式:半角公式:1cos1cossincos22221cos1cossin1cos1cossintancot21cossin1cos21cossin1cos1sinco

4、ssin()sin()21cos sinsin()sin()21cos coscos()cos()21sinsincos()cos()2sinsin2sincos22sinsin2cossin22coscos2 coscos22coscos2sinsin223332sin33sin4sincos34cos3cos3tantantan31 3tan222222sin22sincoscos22cos11 2sincossincot1cot22cot2tantan21 tan2222222222222tan1 tan22sincos1 tan1 tan221tancossin1tan1 tantan

5、sec1cotcsc1|sin| | |tan |xxxxxxxxxxxxxxxxxx,sin()sincoscossincos()coscossinsintantantan()1tantancotcot1cot()cotcot精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 14 页 - - - - - - - - - - 正弦定理:RCcBbAa2sinsinsin余弦定理:Cabbaccos2222反三角函数性质:arcsinarccosarctanarccot22xxxx高阶导数公式莱布

6、尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv中值定理与导数应用:拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()()()()(曲率:.1;0.)1 (limMsMM:.,13202aKaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:定积分的近似计算:bannnbannbanyyyyyyyy

7、nabxfyyyynabxfyyynabxf)(4)(2)(3)()(21)()()(1312420110110抛物线法:梯形法:矩形法:定积分应用相关公式:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 14 页 - - - - - - - - - - babadttfabdxxfabykrmmkFApFsFW)(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴

8、的夹角。与是向量在轴上的投影:点的距离:空间,cos)(.sin,cos,cosPrPr)(Pr,cosPr)()()(2222222212121221221221cbacccbbbaaacbacbarwvbacbbbaaakjibacbbbaaababababababababaajajaajuABABABjzzyyxxMMdzyxzyxzyxzyxzyxzyxzyxzzyyxxzzyyxxuu精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 14 页 - - - - - - - - - - (

9、马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,22211;,1302),(,0)()()(1222222222222222222220000002220000000000czbyaxczbyaxqpzqypxczbyaxptzzntyymtxxpnmstpzznyymxxCBADCzByAxdczbyaxDCzByAxzyxMCBAnzzCyyBxxA多元函数微分法及应用:zyzxyxyxyxyxFFyzFFxzzyxFdxdyFFyFFx

10、dxydFFdxdyyxFdyyvdxxvdvdyyudxxuduyxvvyxuuxvvzxuuzxzyxvyxufztvvztuuzdtdztvtufzyyxfxyxfdzzdzzudyyudxxududyyzdxxzdz,隐函数,隐函数隐函数的求导公式:时,当:多元复合函数的求导法全微分的近似计算:全微分:0),()()(0),(),(),(),(),()(),(),(),(22精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 14 页 - - - - - - - - - - ),(),(1

11、),(),(1),(),(1),(),(1),(),(0),(0),(yuGFJyvvyGFJyuxuGFJxvvxGFJxuGGFFvGuGvFuFvuGFJvuyxGvuyxFvuvu隐函数方程组:微分法在几何上的应用:),(),(),(30)(,()(,()(,(2),(),(),(1),(0),(,0),(0),(0)()()()()()(),()()()(000000000000000000000000000000000000000000000000000zyxFzzzyxFyyzyxFxxzzzyxFyyzyxFxxzyxFzyxFzyxFzyxFnzyxMzyxFGGFFGGFF

12、GGFFTzyxGzyxFzztyytxxtMtzztyytxxzyxMtztytxzyxzyxzyxyxyxxzxzzyzy、过此点的法线方程:、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线方向导数与梯度:上的投影。在是单位向量。方向上的,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。轴到方向为其中的方向导数为:沿任一方向在一点函数lyxflfljieeyxflfjyfixfyxfyxpyxfzlxyfxflflyxpyxfz),(gradsincos),(grad),(grad),(),(sincos

13、),(),(多元函数的极值及其求法:不确定时值时,无极为极小值为极大值时,则:,令:设,00),( ,0),( ,00),(,),(,),(0),(),(22000020000000000BACBACyxAyxABACCyxfByxfAyxfyxfyxfyyxyxxyx重积分及其应用:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 14 页 - - - - - - - - - - DzDyDxzyxDyDxDDyDxDDDayxxdyxfaFayxydyxfFayxxdyxfFFFFFaaMz

14、xoydyxxIydyxyIxdyxdyxyMMydyxdyxxMMxdxdyyzxzAyxfzrdrdrrfdxdyyxf23222232222322222D22)(),()(),()(),(,)0(),0,0(),(,),(),(),(,),(),(1),()sin,cos(),(,其中:的引力:轴上质点平面)对平面薄片(位于轴对于轴对于平面薄片的转动惯量:平面薄片的重心:的面积曲面柱面坐标和球面坐标:dvyxIdvzxIdvzyIdvxMdvzMzdvyMydvxMxdrrrFddddrdrrFdxdydzzyxfddrdrdrdrrddvrzryrxzrrfzrFdzrdrdzrFdx

15、dydzzyxfzzryrxzyxr)()()(1,1,1sin),(sin),(),(sinsincossinsincossin),sin,cos(),(,),(),(,sincos222222200),(0222,转动惯量:,其中重心:,球面坐标:其中:柱面坐标:曲线积分:)()()()()(),(),(),(,)()(),(22tytxdtttttfdsyxfttytxLLyxfL特殊情况:则:的参数方程为:上连续,在设长的曲线积分):第一类曲线积分(对弧精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -

16、第 7 页,共 14 页 - - - - - - - - - - 。,通常设的全微分,其中:才是二元函数时,在:二元函数的全微分求积注意方向相反!减去对此奇点的积分,应。注意奇点,如,且内具有一阶连续偏导数在,、是一个单连通区域;、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),()0 ,0(),(),(21212,)()()coscos()()(),()()(),(),(),()()(00),(),(00yxdyyxQ

17、dxyxPyxuyxuQdyPdxyPxQyPxQGyxQyxPGydxxdydxdyADyPxQxQyPQdyPdxdxdyyPxQQdyPdxdxdyyPxQLdsQPQdyPdxdttttQtttPdyyxQdxyxPtytxLyxyxDLDLDLLLL曲面积分:dsRQPRdxdyQdzdxPdydzdzdxzxzyxQdzdxzyxQdydzzyzyxPdydzzyxPdxdyyxzyxRdxdyzyxRdxdyzyxRdzdxzyxQdydzzyxPdxdyyxzyxzyxzyxfdszyxfzxyzxyxyDDDDyx)coscoscos(),(,),(,),(),(),(,),

18、(),(),(),(),(),(1),(,),(22系:两类曲面积分之间的关号。,取曲面的右侧时取正号;,取曲面的前侧时取正号;,取曲面的上侧时取正,其中:对坐标的曲面积分:对面积的曲面积分:高斯公式:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 14 页 - - - - - - - - - - dsAdvAdsRQPdsAdsnAzRyQxPdsRQPRdxdyQdzdxPdydzdvzRyQxPnndiv)coscoscos(.,0div,div)coscoscos()(成:因此,高斯公

19、式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:通量与散度:高斯公式的物理意义斯托克斯公式曲线积分与曲面积分的关系:dstARdzQdyPdxARQPzyxAyPxQxRzPzQyRRQPzyxRQPzyxdxdydzdxdydzRdzQdyPdxdxdyyPxQdzdxxRzPdydzzQyR的环流量:沿有向闭曲线向量场旋度:,关的条件:空间曲线积分与路径无上式左端又可写成:kjirotcoscoscos)()()(常数项级数:是发散的调和级数:等差数列:等比数列:nnnnqqqqqnn1312112)1(32111112级数审敛法:精品资料 - - - 欢迎下载 - - -

20、 - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 14 页 - - - - - - - - - - 散。存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):根植审敛法(柯西判、正项级数的审敛法nnnnnnnnnnsuuusUUulim;3111lim2111lim1211。的绝对值其余项,那么级数收敛且其和如果交错级数满足莱布尼兹定理:的审敛法或交错级数1113214321,0lim)0,(nnnnnnnnurrusuuuuuuuuuuu绝对收敛与条件收

21、敛:时收敛时发散级数:收敛;级数:收敛;发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111) 1(1)1 () 1()2()1 ()2()2() 1(232121pnpnnnuuuuuuuupnnnn幂级数:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 14 页 - - - - - - - - - - 0010)3(lim)3(1111111221032RRRaaaaRRxRxRxRxaxaxaaxxxxxxxnnnn

22、nnnn时,时,时,的系数,则是,其中求收敛半径的方法:设称为收敛半径。,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点对于级数时,发散时,收敛于函数展开成幂级数:nnnnnnnnnxnfxfxffxfxRxfxxnfRxxnxfxxxfxxxfxf!)0(! 2)0()0()0()(00lim)(,)()!1()()(!)()(! 2)()()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:一些函数展开成幂级数:)()!12() 1(! 5! 3sin) 11(!) 1()1(! 2)

23、1(1)1(121532xnxxxxxxxnnmmmxmmmxxnnnm欧拉公式:2sin2cossincosixixixixixeexeexxixe或三角级数:。上的积分在任意两个不同项的乘积正交性:。,其中,0,cos,sin2cos,2sin,cos,sin, 1cossin)sincos(2)sin()(001010nxnxxxxxxtAbAaaAanxbnxaatnAAtfnnnnnnnnnnnn傅立叶级数:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 14 页 - - - -

24、- - - - - - 是偶函数,余弦级数:是奇函数,正弦级数:(相减)(相加)其中,周期nxaaxfnnxdxxfabnxbxfnxdxxfbannxdxxfbnnxdxxfanxbnxaaxfnnnnnnnnnnncos2)(2, 1 ,0cos)(20sin)(3 ,2 ,1nsin)(201241312116413121124614121851311)3,2, 1(sin)(1)2, 1 ,0(cos)(12)sincos(2)(00022222222222222210周期为2l的周期函数的傅立叶级数:llnllnnnnndxlxnxflbndxlxnxflallxnblxnaaxf)

25、3 , 2, 1(sin)(1)2, 1 , 0(cos)(12)sincos(2)(10其中,周期微分方程的相关概念:即得齐次方程通解。,代替分离变量,积分后将,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。得:的形式,解法:为:一阶微分方程可以化可分离变量的微分方程或一阶微分方程:uxyuuduxdxudxduudxduxudxdyxyuxyyxyxfdxdyCxFyGdxxfdyygdxxfdyygdyyxQdxyxPyxfy)()(),(),()()()()()()(0),(),(),(一阶线性微分方程:精品资料 - - - 欢迎下载 - - - - - - -

26、 - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 14 页 - - - - - - - - - - )1 ,0()()(2)(0)(,0)()()(1)()()(nyxQyxPdxdyeCdxexQyxQCeyxQxQyxPdxdyndxxPdxxPdxxP,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:全微分方程:通解。应该是该全微分方程的,其中:分方程,即:中左端是某函数的全微如果CyxuyxQyuyxPxudyyxQdxyxPyxdudyyxQdxyxP),(),(),(0),(),(),(0),(),(二阶微分方程:时

27、为非齐次时为齐次,0)(0)()()()(22xfxfxfyxQdxdyxPdxyd二阶常系数齐次线性微分方程及其解法:2122,)(2,(*)0)(1,0(*)rryyyrrqprrqpqyypy式的两个根、求出的系数;式中的系数及常数项恰好是,其中、写出特征方程:求解步骤:为常数;,其中式的通解:出的不同情况,按下表写、根据(*),321rr的形式,21rr(*) 式的通解两个不相等实根)04(2qpxrxrececy2121两个相等实根)04(2qpxrexccy1)(21一对共轭复根)04(2qp242221pqpirir,)sincos(21xcxceyx二阶常系数非齐次线性微分方程

28、:型为常数;型,为常数,sin)(cos)()()()(,)(xxPxxPexfxPexfqpxfqyypynlxmx其他公式:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 14 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 14 页,共 14 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁